Principles of Foundation Engineering (MindTap Course List)
8th Edition
ISBN: 9781305081550
Author: Braja M. Das
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 5, Problem 5.11P
To determine
Find the gross ultimate bearing capacity of the foundation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
FIGURE P8.9
square foundation, 15 m wide, carries a net column load
of 500 kN as shown in Figure P8.11. Determine the average
stress increaso beneath the center of the foundation in the
clay layer.
a. Using Eq. (8.25),
b. Using Eqs. (8.26) and (8.10), and
c. Using Eqs (8.26) and (8. 15).
8.11
A
500 KN (net load)
Sand
0.9 m
Clay
3 m
Refer to Figure 5,determine th eaverage stress increase in the clay layer below the center of the foundation due to the net foundation load of 490,500kN (net load). Using Eq.(7.25)
8.4 A rectangular foundation is shown in Figure P8.2, given B=2m, L=4m
q = 240 kN/m², H = 6m, and D; = 2 m.
(a) Assuming E = 3800KN/m², calculate the average elastic settlement. Use
Eq. (8.24).
(b) If the clay is normally consolidated, calculate the consolidation settlement.
Use Eq. (8.35) and y,t = 17.5 kN/m’, C, = 0.12, and e, = 1.1.
%3D
G.W.T.
D,=2 m
= 240 kN/m²
Clay
e. = .IO
H= 6 m
1.
Rock
Figure P8.2
S,(average) = µ,M0
qB
(v = 0.5)
E
(8.24)
(8.35)
Chapter 5 Solutions
Principles of Foundation Engineering (MindTap Course List)
Knowledge Booster
Similar questions
- Problem (4.10): The foundation plan shown in the figure below is subjected to a uniform contact pressure of 40 kN/m². Determine the vertical stress increment due to the foundation load at (5m) depth below the point (x). →|1.5m + 1.5m 2m 3 0.5m 2m + 3m 3m 3marrow_forward8.4 A rectangular foundation is shown in Figure P8.2, given B= 2 m, L=4m q=240 kN/m², H=6m, and D; =2 m. (a) Assuming E = 3800KN/m², calculate the average elastic settlement. Use Eq. (8.24). (b) If the clay is normally consolidated, calculate the consolidation settlement. Use Eq. (8.35) and yat = 17.5 kN/m², C¸ = 0.12, and e, = 1.1.arrow_forward6.8 Refer to Figure P6.8. Using the procedure outlined in Section 6.8, determine the average stress increase in the clay layer below the center of the foundation due to the net foundation load of 50 ton. [Use Eq. (6.28).] 4:5 ft 3 ft 50 ton (net load) 10 ft 5 ft x 5 ft Sand y=100 lb/ft! Sand Yat=122 lb/ft³ Groundwater table Ysat ⇒120 lb/ft³ = 0.7 C=0.25 -C, 0,06 Preconsolidation pressure = 2000 lb/ft² Figure P6.8arrow_forward
- 7.14 Refer to Figure 7.15. For a foundation on a layer of sand, given: B = 5 ft, L = 10 ft, d = 5 ft, B = 26.6°, e = 0.5 ft, and & = 10°. The Pressuremeter testing at the site pro- duced a mean Pressuremeter curve for which the pam) versus AR/R, points are as follow. AR/R. (1) P,(m) (lb/in.?) (2) 0.002 7.2 0.004 24.2 0.008 32.6 0.012 42.4 0.024 68.9 0.05 126.1 0.08 177.65 0.1 210.5 0.2 369.6 What should be the magnitude of Q, for a settlement (center) of 1 in.? Foundation BxL В Figure 7.15 Definition of parameters-B,arrow_forwardProblem 1. A column foundation (Figure below) is 3 m × 2 m in plan. The load on the column, including the weight of the foundation is 4500 kN. Determin the average vertical stress increase 4 m beneath the corner of the foundation in the soil layer due to the foundation loading by: a) Boussinesq equations b) 2:1 method Given: Df = 1.5 m, Ø'= 25°, c'= 70 kN/m². 1.5 m 1 m 3m x 2m y = 17 kN/m³ Water level Ysat 19.5 kN/m³arrow_forwardS1arrow_forward
- A circular foundation (D = 6 m) is built on a construction site where the soil profile is shown in Figure 5 below. The circular foundation applies a uniform pressure of 80 kPa to the surface of clay. The properties of the clay are: Specific gravity, G₁ Saturated unit weight at Compression index Ce Recompression index Cr Consolidation coefficient, c Over-consolidation ratio, OCR 10 m 6m Ø Clay Impervious rock Figure 5 2.6 20 kN/m³ 0.25 0.10 2.5 m²/year 1.2 (b) Calculate the stress increase at the center of the clay layer and 1) beneath the foundation center and 2) beneath the edge of the foundation; (c) Calculate the consolidation settlement beneath the center of the foundation due to the stress increase; (d) Determine the settlement at the center of the clay after 1 year of applying the pressure; (e) A 50 mm thick clay sample was taken from the site and consolidated in the oedometer, how long it will take for the clay to reach 90% consolidation?arrow_forwardQuestion attachedarrow_forwardH.W 2.pdf > H.Q 6 A flexible foundation measuring 1.5 m x 3 m is supported by a saturated clay. Given: Dr = 1.2 m, H = 3 m, Es (clay)= 600 kN/m2, and qo = 150 kN/m?. Determine the average elastic settlement of the foundation. H.O 7 Figure 7.3 shows a foundation of 10 ft x 6.25 ft resting on a sand deposit. The net load per unit area at the level of the foundation, qo, is 3000 Ib/ft?. For the sand, u, = 0.3, Es = 3200 Ib/in?, Df = 2.5 ft, and H = 32 ft. Assume that the foundation is rigid and determine the elastic settlement the foundation would undergo. H.O 8 Determine the net ultimate bearing capacity of mat foundations with the following characteristics: c, = 2500 Ib/ft, = 0, B = 20 ft, L = 30 ft, D, = 6.2 ft Foundation Engineering I H.W 2 H.O 9 A 20-m-long concrete pile is shown in Figure below. Estimate the ultimate point load Q, by a. Meyerhof's method b. Coyle and Castello's method Concrete pile 460 mm x 460 mm Loose sand 20m y I86 ANi Dee s H.O 10 A concrete pile 20 m long…arrow_forward
- Example 5.7 Consider a rectangular foundation 2 mx 4 m in plan at a depth of 1.2 m in a sand deposit, as shown in Figure 5.23a. Given: y = 17.5 kN/m³; ā = 145 kN/m², and the following approximated variation of qc with z: 1.2 m q=145 kN/m² ++++y=17.5 kN/m³ z (m) 9c (kN/m²) B=2m- 0-0.5 2250 L=4 m 0.5-2.5 3430 2.5-5.0 2950 Estimate the elastic settlement of the foundation using the strain influence factor method.arrow_forwardPLEASE ONLY SOLVE PROBLEM 2, Please only solve problem 2 with clear step by step calculations and solutions. I want to understand the theory and concept behind it so please help mearrow_forwardA circular foundation having qo=720 kPa and radius of 2m is placed on a soil section as shown in figure (1), if the ground water level was located at N.G.S, for the soil element (A) which located under the center of the foundation at the middle of clay layer. Calculate the followings: Sandy soil Ysa19.74 kN/m³ eo = 0.54 Clayey soil Ysa19.18 kN/m³ e =0.8 Calculate the Effective stress Choose... + at soil element (A) in (kPa) The increase in stress (kPa) due to footing load (Use Choose... + Approximated method) at soil element (A) 7marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning