Concept explainers
Interpretation:
The given pairs of compounds are to be identified as diastereomers, enantiomers, constitutional isomers and not isomeric.
Concept Introduction:
Isomers are molecules which have same number of atoms but different arrangements of the atoms in space.
Stereoisomers have the same molecular formula, but the arrangement of atoms in the three-dimensional orientation is different.
Enantiomers are stereoisomers whose molecules have a chiral center and are mirror images of each other.
Diastereomers are stereoisomers that are not mirror images of each other. They are non-superimposable.
Molecules whose atoms are connected differently are called constitutional isomers.
Meso are those compounds whose molecules are superimposable on their image mirrors in spite of the presence of asymmetric carbon atom.
Chiral molecules are capable of rotating plane polarized light
The molecules which are superimposable or identical with their mirror images are known as achiral molecules, and achiral molecules are not capable of rotating the plane-polarised light.
Plane of symmetry is the plane that bisects the molecule in two equal halves, such that they are mirror images of each other.
Compounds having plane of symmetry are usually achiral as they do not have different atoms around the central carbon atom.
The stereoformula which is depicted in two dimensions, in which stereochemical information is not destroyed, is determined by the Fisher Projection formula.
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Organic Chemistry
- (f) SO: Best Lewis Structure 3 e group geometry:_ shape/molecular geometry:, (g) CF2CF2 Best Lewis Structure polarity: e group arrangement:_ shape/molecular geometry: (h) (NH4)2SO4 Best Lewis Structure polarity: e group arrangement: shape/molecular geometry: polarity: Sketch (with angles): Sketch (with angles): Sketch (with angles):arrow_forward1. Problem Set 3b Chem 141 For each of the following compounds draw the BEST Lewis Structure then sketch the molecule (showing bond angles). Identify (i) electron group geometry (ii) shape around EACH central atom (iii) whether the molecule is polar or non-polar (iv) (a) SeF4 Best Lewis Structure e group arrangement:_ shape/molecular geometry: polarity: (b) AsOBr3 Best Lewis Structure e group arrangement:_ shape/molecular geometry: polarity: Sketch (with angles): Sketch (with angles):arrow_forward(c) SOCI Best Lewis Structure 2 e group arrangement: shape/molecular geometry:_ (d) PCls Best Lewis Structure polarity: e group geometry:_ shape/molecular geometry:_ (e) Ba(BrO2): Best Lewis Structure polarity: e group arrangement: shape/molecular geometry: polarity: Sketch (with angles): Sketch (with angles): Sketch (with angles):arrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning