In the system shown in Figure P5.23, a horizontal force
Figure P5.23
Trending nowThis is a popular solution!
Chapter 5 Solutions
Physics for Scientists and Engineers with Modern Physics
Additional Science Textbook Solutions
Sears And Zemansky's University Physics With Modern Physics
MODERN PHYSICS (LOOSELEAF)
University Physics Volume 1
Lecture- Tutorials for Introductory Astronomy
Introduction To Health Physics
University Physics (14th Edition)
- Let us make the (unrealistic) assumption that a boat of mass m gliding with initial velocity v0 in water is slowed by a viscous retarding force of magnitude bv2, where b is a constant, (a) Find and sketch v(t). How long does it take the boat to reach a speed of v0/l000? (b) Find x(t). How far does the boat travel in this time? Let m = 200 kg, v0 = 2 m/s, and b = 0.2 Nm-2s2.arrow_forwardIf the vector components of the position of a particle moving in the xy plane as a function of time are x(t)=(2.5ms2)t2i and y(t)=(5.0ms3)t3j, when is the angle between the net force on the particle and the x axis equal to 45?arrow_forwardAn object of mass m = 1.00 kg is observed to have an acceleration a with a magnitude of 10.0 m/s2 in a direction 60.0 east of north. Figure P4.29 shows a view of the object from above. The force F2 acting on the object has a magnitude of 5.00 N and is directed north. Determine the magnitude and direction of the one other horizontal force F1 acting on the object. Figure P4.29arrow_forward
- (a) Find an equation to determine the magnitude of the net force required to stop a car of mass m, given that the initial speed of the car is v0 and the stopping distance is x . (b) Find the magnitude of the net force if the mass of the car is 1050 kg, the initial speed is 40.0 km/h, and the stopping distance is 25.0 m.arrow_forwardIf a single constant force acts on an object that moves on a straight line, the objects velocity is a linear function of time. The equation v = vi + at gives its velocity v as a function of time, where a is its constant acceleration. What if velocity is instead a linear function of position? Assume that as a particular object moves through a resistive medium, its speed decreases as described by the equation v = vi kx, where k is a constant coefficient and x is the position of the object. Find the law describing the total force acting on this object.arrow_forwardStarting from rest, a rectangular toy block with mass 300 g slides in 1.30 s all the way across a table 1.20 m in length that Zak has tilted at an angle of 42.0 to the horizontal. a. What is the magnitude of the acceleration of the toy block? b. What is the coefficient of kinetic friction between the block and the table? c. What are the magnitude and direction of the friction force acting on the block? d. What is the speed of the block when it is at the end of the table, having slid a distance of 1.20 m?arrow_forward
- For t 0, an object of mass m experiences no force and moves in the positive x direction with a constant speed vi. Beginning at t = 0, when the object passes position x = 0, it experiences a net resistive force proportional to the square of its speed: Fnet=mkv2i, where k is a constant. The speed of the object after t = 0 is given by v = vi/(1 + kvit). (a) Find the position x of the object as a function of time. (b) Find the objects velocity as a function of position.arrow_forwardA person pushes a box of mass m= 25 kg in a straight line along a rough floor. The applied force F has magnitude 85 N and acts downward at an angle 0 = 10° with respect to the horizontal, as shown below. The box is initially at rest at the position x, = 0 m, and it has speed v2 = 0.55 m/s at position x2= 3.50 m. a). Find the coefficient of friction between the box and the floor. b). What is the net work done? c). How much work (magnitude and sign) is done by the friction force? (This problem involves constant acceleration, Newton's Laws, and work!) marrow_forwardA box, initially at rest, is pushed up a ramp that makes an angle of 15◦ with the horizontal as shown in the diagram. The magnitude of the pushing force is 8m newtons, where m is the mass of the box in kilograms. The force is in a direction parallel to and up the ramp. The coefficient of sliding friction between the box and the ramp is 0.25. Model the box as a particle and take the magnitude of the acceleration due to gravity to be g = 9.8 m s−2 . Express the four forces in component form in terms of unknown magnitudes where appropriate and find an expression for the resultant force acting on the box. Hence find the magnitude of the acceleration of the box, in m s−2arrow_forward
- Please provide answer urgently, with explanation. Also, is speed and velocity the same in this case?arrow_forwardA 10.2-kg box is sliding across a horizontal floor. It has an initial speed of 1.25m / s and the only force acting on it is kinetic friction with magnitude f(k)= 2.35N .Determine the distance the box will travel before coming to restarrow_forwardThree crates with masses m, = are connected on a rough floor with a coefficient of kinetic friction Hk 12 kg and m2 = m3 = 8 kg %3D %3D =0.15. Under the influence of an external force F, the three crates move to the right with a constant speed v = 1.2 m/s. What is the net force exerted on this system along the x axis, Fnet.x=? Motion my O Cannot be determined O 0.5 N O 0.15 N O 1.2 Narrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning