Let
Exercise 3 b. Exercise 4 c. Exercise 5
d. Exercise 6 e. Exercise 7 f. Exercise 8
Section 4.4
Let
Find the distinct left cosets of
Find the distinct right cosets of
Let
Find the distinct left cosets of
Find the distinct right cosets of
Let
Find the distinct left cosets of
Find the distinct right cosets of
Let
Find the distinct left cosets of
Find the distinct right cosets of
In Exercises 7 and 8, let
Let
Find the distinct left cosets of
Find the distinct right cosets of
Let
Find the distinct left cosets of
Find the distinct right cosets of
Trending nowThis is a popular solution!
Chapter 4 Solutions
Elements Of Modern Algebra
- Find the right regular representation of G as defined Exercise 11 for each of the following groups. a. G={ 1,i,1,i } from Example 1. b. The octic group D4={ e,,2,3,,,, }.arrow_forwardFind the normalizer of the subgroup (1),(1,3)(2,4) of the octic group D4.arrow_forwardExercises 13. For each of the following values of, find all subgroups of the group described in Exercise, addition and state their order. a. b. c. d. e. f.arrow_forward
- Find all subgroups of the octic group D4.arrow_forwardLet H and K be subgroups of a group G and K a subgroup of H. If the order of G is 24 and the order of K is 3, what are all the possible orders of H?arrow_forwardIn Exercises 3 and 4, let G be the octic group D4=e,,2,3,,,, in Example 12 of section 4.1, with its multiplication table requested in Exercise 20 of the same section. Let H be the subgroup e, of the octic group D4. Find the distinct left cosets of H in D4, write out their elements, partition D4 into left cosets of H, and give [D4:H]. Find the distinct right cosets of H in D4, write out their elements, and partition D4 into right cosets of H. Example 12 Using the notational convention described in the preceding paragraph, we shall write out the dihedral group D4 of rigid motions of a square The elements of the group D4 are as follows: 1. the identity mapping e=(1) 2. the counterclockwise rotation =(1,2,3,4) through 900 about the center O 3. the counterclockwise rotation 2=(1,3)(2,4) through 1800 about the center O 4. the counterclockwise rotation 3=(1,4,3,2) through 2700 about the center O 5. the reflection =(1,4)(2,3) about the horizontal line h 6. the reflection =(2,4) about the diagonal d1 7. the reflection =(1,2)(3,4) about the vertical line v 8. the reflection =(1,3) about the diagonal d2. The dihedral group D4=e,,2,3,,,, of rigid motions of the square is also known as the octic group. The multiplication table for D4 is requested in Exercise 20 of this section.arrow_forward
- In Exercises 3 and 4, let be the octic group in Example 12 of section 4.1, with its multiplication table requested in Exercise 20 of the same section. Let be the subgroup of the octic group . Find the distinct left cosets of in , write out their elements, partition into left cosets of , and give . Find the distinct right cosets of in , write out their elements, and partition into right cosets of . Example 12 Using the notational convention described in the preceding paragraph, we shall write out the dihedral group of rigid motions of a square The elements of the group are as follows: 1. the identity mapping 2. the counterclockwise rotation through about the center 3. the counterclockwise rotation through about the center 4. the counterclockwise rotation through about the center 5. the reflection about the horizontal line 6. the reflection about the diagonal 7. the reflection about the vertical line 8. the reflection about the diagonal . The dihedral group of rigid motions of the square is also known as the octic group. The multiplication table for is requested in Exercise 20 of this section.arrow_forward9. Find all homomorphic images of the octic group.arrow_forward12. Find all homomorphic images of each group in Exercise of Section. 18. Let be the group of units as described in Exercise. For each value of, write out the elements of and construct a multiplication table for . a. b. c. d.arrow_forward
- Find the order of each of the following elements in the multiplicative group of units . for for for forarrow_forwardLet A={ a,b,c }. Prove or disprove that P(A) is a group with respect to the operation of union. (Sec. 1.1,7c)arrow_forward11. Find all normal subgroups of the alternating group .arrow_forward
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,