Elements Of Modern Algebra
Elements Of Modern Algebra
8th Edition
ISBN: 9781285463230
Author: Gilbert, Linda, Jimmie
Publisher: Cengage Learning,
bartleby

Videos

Question
Book Icon
Chapter 4.1, Problem 28E

(a)

To determine

The stabilizer of (1) for the symmetric group D4

(b)

To determine

The stabilizer of (2) for the symmetric group D4

(c)

To determine

The stabilizer of (3) for the symmetric group D4

(d)

To determine

The stabilizer of (4) for the symmetric group D4

Blurred answer
Students have asked these similar questions
Q1lal Let X be an arbitrary infinite set and let r the family of all subsets F of X which do not contain a particular point x, EX and the complements F of all finite subsets F of X show that (X.r) is a topology. bl The nbhd system N(x) at x in a topological space X has the following properties NO- N(x) for any xX N1- If N EN(x) then x€N N2- If NEN(x), NCM then MeN(x) N3- If NEN(x), MEN(x) then NOMEN(x) N4- If N = N(x) then 3M = N(x) such that MCN then MeN(y) for any уем Show that there exist a unique topology τ on X. Q2\a\let (X,r) be the topology space and BST show that ẞ is base for a topology on X iff for any G open set xEG then there exist A Eẞ such that x E ACG. b\Let ẞ is a collection of open sets in X show that is base for a topology on X iff for each xex the collection B, (BEB\xEB) is is a nbhd base at x. - Q31 Choose only two: al Let A be a subspace of a space X show that FCA is closed iff F KOA, K is closed set in X. الرياضيات b\ Let X and Y be two topological space and f:X -…
Q1\ Let X be a topological space and let Int be the interior operation defined on P(X) such that 1₁.Int(X) = X 12. Int (A) CA for each A = P(X) 13. Int (int (A) = Int (A) for each A = P(X) 14. Int (An B) = Int(A) n Int (B) for each A, B = P(X) 15. A is open iff Int (A) = A Show that there exist a unique topology T on X. Q2\ Let X be a topological space and suppose that a nbhd base has been fixed at each x E X and A SCX show that A open iff A contains a basic nbdh of each its point Q3\ Let X be a topological space and and A CX show that A closed set iff every limit point of A is in A. A'S A ACA Q4\ If ẞ is a collection of open sets in X show that ẞ is a base for a topology on X iff for each x E X then ẞx = {BE B|x E B} is a nbhd base at x. Q5\ If A subspace of a topological space X, if x Є A show that V is nbhd of x in A iff V = Un A where U is nbdh of x in X.
+ Theorem: Let be a function from a topological space (X,T) on to a non-empty set y then is a quotient map iff vesy if f(B) is closed in X then & is >Y. ie Bclosed in bp closed in the quotient topology induced by f iff (B) is closed in x- التاريخ Acy الموضوع : Theorem:- IP & and I are topological space and fix sy is continuous او function and either open or closed then the topology Cony is the quatient topology p proof: Theorem: Lety have the quotient topology induced by map f of X onto y. The-x: then an arbirary map g:y 7 is continuous 7. iff gof: x > z is "g of continuous Continuous function f

Chapter 4 Solutions

Elements Of Modern Algebra

Ch. 4.1 - True or False Label each of the following...Ch. 4.1 - True or False Label each of the following...Ch. 4.1 - Exercises 1. Express each permutation as a product...Ch. 4.1 - Exercises 2. Express each permutation as a product...Ch. 4.1 - Exercises 3. In each part of Exercise , decide...Ch. 4.1 - In each part of Exercise 2, decide whether the...Ch. 4.1 - Find the order of each permutation in Exercise 1....Ch. 4.1 - Exercises 6. Find the order of each permutation in...Ch. 4.1 - Exercises 7. Express each permutation in Exercise ...Ch. 4.1 - Express each permutation in Exercise 2 as a...Ch. 4.1 - Compute f2, f3, and f1 for each of the following...Ch. 4.1 - Let f=(1,2,3)(4,5). Compute each of the following...Ch. 4.1 - Exercises Let f=(1,6)(2,3,5,4). Compute each of...Ch. 4.1 - Exercises 12. Compute , the conjugate of by , for...Ch. 4.1 - Exercises 13. For the given permutations, and ,...Ch. 4.1 - Exercises 14. Write the permutation as a product...Ch. 4.1 - Exercises 15. Write the permutation as a product...Ch. 4.1 - Exercises List all the elements of the alternating...Ch. 4.1 - Exercises List all the elements of S4, written in...Ch. 4.1 - Exercises 18. Find all the distinct cyclic...Ch. 4.1 - Exercises 19. Find cyclic subgroups of that have...Ch. 4.1 - Exercises Construct a multiplication table for the...Ch. 4.1 - Exercises 21. Find all the distinct cyclic...Ch. 4.1 - Exercises Find an isomorphism from the octic group...Ch. 4.1 - Prob. 23ECh. 4.1 - Exercises In Section 3.3, the centralizer of an...Ch. 4.1 - Prob. 25ECh. 4.1 - Prob. 26ECh. 4.1 - Prob. 27ECh. 4.1 - Prob. 28ECh. 4.1 - Prob. 29ECh. 4.1 - Exercises Let be the mapping from Sn to the...Ch. 4.1 - Exercises Let f and g be disjoint cycles in Sn....Ch. 4.1 - Exercises Prove that the order of An is n!2.Ch. 4.1 - Exercises 33. Prove Theorem : Let be a...Ch. 4.2 - True or False Label the following statements as...Ch. 4.2 - In Exercises 1- 9, let G be the given group. Write...Ch. 4.2 - In Exercises 1- 9, let be the given group. Write...Ch. 4.2 - In Exercises 1- 9, let be the given group. Write...Ch. 4.2 - In Exercises 1- 9, let G be the given group. Write...Ch. 4.2 - In Exercises 1- 9, let G be the given group. Write...Ch. 4.2 - In Exercises 1- 9, let be the given group. Write...Ch. 4.2 - In Exercises 1- 9, let G be the given group. Write...Ch. 4.2 - In Exercises 1- 9, let G be the given group. Write...Ch. 4.2 - In Exercises 1- 9, let be the given group. Write...Ch. 4.2 - 10. For each in the group, define a mapping by ...Ch. 4.2 - 11. For each in the group, define a mapping by ...Ch. 4.2 - Find the right regular representation of G as...Ch. 4.2 - For each a in the group G define a mapping ma:GG...Ch. 4.3 - Prob. 1TFECh. 4.3 - Prob. 2TFECh. 4.3 - Prob. 3TFECh. 4.3 - Prob. 4TFECh. 4.3 - True or False Label each of the following...Ch. 4.3 - Prob. 6TFECh. 4.3 - The alternating group A4 on 4 elements is the same...Ch. 4.3 - Prob. 1ECh. 4.3 - Prob. 2ECh. 4.3 - Prob. 3ECh. 4.3 - Prob. 4ECh. 4.3 - Prob. 5ECh. 4.3 - Prob. 6ECh. 4.3 - Prob. 7ECh. 4.3 - Prob. 8ECh. 4.3 - Prob. 9ECh. 4.3 - Prob. 10ECh. 4.3 - Prob. 11ECh. 4.3 - Prob. 12ECh. 4.3 - Prob. 13ECh. 4.3 - Prob. 14ECh. 4.3 - Prob. 15ECh. 4.3 - Prob. 16ECh. 4.3 - Prob. 17ECh. 4.3 - Prob. 18ECh. 4.3 - Prob. 19ECh. 4.3 - Prob. 20ECh. 4.3 - Prob. 21ECh. 4.3 - Prob. 22ECh. 4.3 - Construct a multiplication table for the group G...Ch. 4.3 - Prob. 24ECh. 4.3 - Construct a multiplication table for the group D5...Ch. 4.3 - List the elements of the group of rigid motions...Ch. 4.3 - Let G be the group of rigid motions of a cube....Ch. 4.3 - Let G be the group of rigid motions of a regular...Ch. 4.3 - Prob. 29ECh. 4.4 - True or False Label each of the following...Ch. 4.4 - True or False Label each of the following...Ch. 4.4 - True or False Label each of the following...Ch. 4.4 - True or False Label each of the following...Ch. 4.4 - True or False Label each of the following...Ch. 4.4 - True or False Label each of the following...Ch. 4.4 - True or False Label each of the following...Ch. 4.4 - True or False Label each of the following...Ch. 4.4 - 1. Consider , the groups of units in under...Ch. 4.4 - For each of the following subgroups H of the...Ch. 4.4 - In Exercises 3 and 4, let G be the octic group...Ch. 4.4 - In Exercises 3 and 4, let be the octic group in...Ch. 4.4 - Let H be the subgroup (1),(1,2) of S3. Find the...Ch. 4.4 - Let be the subgroup of . Find the distinct left...Ch. 4.4 - In Exercises 7 and 8, let be the multiplicative...Ch. 4.4 - Prob. 8ECh. 4.4 - Let be a subgroup of a group with . Prove that ...Ch. 4.4 - Let be a subgroup of a group with . Prove that ...Ch. 4.4 - Let be a group of order 24. If is a subgroup of...Ch. 4.4 - Let H and K be subgroups of a group G and K a...Ch. 4.4 - Let H be a subgroup of the group G. Prove that if...Ch. 4.4 - Let H be a subgroup of a group G. Prove that gHg1...Ch. 4.4 - Prob. 15ECh. 4.4 - Let H be a subgroup of the group G. Prove that the...Ch. 4.4 - Show that a group of order 4 either is cyclic or...Ch. 4.4 - Let G be a group of finite order n. Prove that...Ch. 4.4 - Find the order of each of the following elements...Ch. 4.4 - Find all subgroups of the octic group D4.Ch. 4.4 - Prob. 21ECh. 4.4 - Lagranges Theorem states that the order of a...Ch. 4.4 - Find all subgroups of the quaternion group.Ch. 4.4 - Find two groups of order 6 that are not...Ch. 4.4 - If H and K are arbitrary subgroups of G, prove...Ch. 4.4 - Let p be prime and G the multiplicative group of...Ch. 4.4 - Prove that any group with prime order is cyclic.Ch. 4.4 - Let G be a group of order pq, where p and q are...Ch. 4.4 - Let be a group of order , where and are...Ch. 4.4 - Let G be an abelian group of order 2n, where n is...Ch. 4.4 - A subgroup H of the group Sn is called transitive...Ch. 4.4 - (See Exercise 31.) Suppose G is a group that is...Ch. 4.5 - True or False Label each of the following...Ch. 4.5 - Prob. 2TFECh. 4.5 - True or False Label each of the following...Ch. 4.5 - True or False Label each of the following...Ch. 4.5 - True or False Label each of the following...Ch. 4.5 - True or False Label each of the following...Ch. 4.5 - Prob. 7TFECh. 4.5 - Let G be the group and H the subgroup given in...Ch. 4.5 - 2. Show that is a normal subgroup of the...Ch. 4.5 - Prove or disprove that H={ [ 1a01 ]|a } is a...Ch. 4.5 - 4. Prove that the special linear group is a normal...Ch. 4.5 - 5. For any subgroup of the group , let denote the...Ch. 4.5 - Let H be a normal cyclic subgroup of a finite...Ch. 4.5 - Let H be a torsion subgroup of an abelian group G....Ch. 4.5 - Show that every subgroup of an abelian group is...Ch. 4.5 - 9. Consider the octic group of Example 3. Find...Ch. 4.5 - 10. Find all normal subgroups of the octic...Ch. 4.5 - 11. Find all normal subgroups of the alternating...Ch. 4.5 - 12. Find all normal subgroups of the quaternion...Ch. 4.5 - Exercise 8 states that every subgroup of an...Ch. 4.5 - 14. Find groups and such that and the following...Ch. 4.5 - Find groups H and K such that the following...Ch. 4.5 - 16. Let be a subgroup of and assume that every...Ch. 4.5 - Prob. 17ECh. 4.5 - 18. If is a subgroup of , and is a normal...Ch. 4.5 - 19. With and as in Exercise 18, prove that is...Ch. 4.5 - Prob. 20ECh. 4.5 - With H and K as in Exercise 18, prove that K is a...Ch. 4.5 - 22. If and are both normal subgroups of , prove...Ch. 4.5 - 23. Prove that if and are normal subgroups of such...Ch. 4.5 - 24. The center of a group is defined as ...Ch. 4.5 - Prob. 25ECh. 4.5 - Prob. 26ECh. 4.5 - 27. Suppose is a normal subgroup of order of a...Ch. 4.5 - 28. For an arbitrary subgroup of the group , the...Ch. 4.5 - Find the normalizer of the subgroup (1),(1,3)(2,4)...Ch. 4.5 - Prob. 30ECh. 4.5 - Prob. 31ECh. 4.5 - Prob. 32ECh. 4.5 - Prob. 33ECh. 4.5 - Prob. 34ECh. 4.5 - Show that An has index 2 in Sn, and thereby...Ch. 4.5 - Prob. 36ECh. 4.5 - Prob. 37ECh. 4.5 - Let n be appositive integer, n1. Prove by...Ch. 4.5 - Prob. 39ECh. 4.5 - 40. Find the commutator subgroup of each of the...Ch. 4.6 - True or False Label each of the following...Ch. 4.6 - Prob. 2TFECh. 4.6 - True or False Label each of the following...Ch. 4.6 - True or False Label each of the following...Ch. 4.6 - True or False Label each of the following...Ch. 4.6 - In Exercises , is a normal subgroup of the group...Ch. 4.6 - In Exercises , is a normal subgroup of the group...Ch. 4.6 - In Exercises , is a normal subgroup of the group...Ch. 4.6 - Prob. 4ECh. 4.6 - Prob. 5ECh. 4.6 - In Exercises , is a normal subgroup of the group...Ch. 4.6 - Let G be the multiplicative group of units U20...Ch. 4.6 - Suppose G1 and G2 are groups with normal subgroups...Ch. 4.6 - 9. Find all homomorphic images of the octic...Ch. 4.6 - 10. Find all homomorphic images of. Ch. 4.6 - Find all homomorphic images of the quaternion...Ch. 4.6 - 12. Find all homomorphic images of each group in...Ch. 4.6 - Prob. 13ECh. 4.6 - Let G=I2,R,R2,R3,H,D,V,T be the multiplicative...Ch. 4.6 - 15. Repeat Exercise with, the multiplicative group...Ch. 4.6 - Prob. 16ECh. 4.6 - Prob. 17ECh. 4.6 - 18. If is a subgroup of the group such that for...Ch. 4.6 - Prob. 19ECh. 4.6 - Prob. 20ECh. 4.6 - Prob. 21ECh. 4.6 - Prob. 22ECh. 4.6 - Prob. 23ECh. 4.6 - 24. Let be a cyclic group. Prove that for every...Ch. 4.6 - 25. Prove or disprove that if a group has cyclic...Ch. 4.6 - 26. Prove or disprove that if a group has an...Ch. 4.6 - 27. a. Show that a cyclic group of order has a...Ch. 4.6 - Assume that is an epimorphism from the group G to...Ch. 4.6 - 29. Suppose is an epimorphism from the group to...Ch. 4.6 - Let G be a group with center Z(G)=C. Prove that if...Ch. 4.6 - 31. (See Exercise 30.) Prove that if and are...Ch. 4.6 - 32. Let be a fixed element of the group ....Ch. 4.6 - Prob. 33ECh. 4.6 - Prob. 34ECh. 4.6 - Prob. 35ECh. 4.6 - Prob. 36ECh. 4.6 - Let H and K be arbitrary groups and let HK denotes...Ch. 4.6 - Prob. 38ECh. 4.7 - True or False Label each of the following...Ch. 4.7 - Prob. 2TFECh. 4.7 - Let H1={ [ 0 ],[ 6 ] } and H2={ [ 0 ],[ 3 ],[ 6...Ch. 4.7 - Prob. 2ECh. 4.7 - Prob. 3ECh. 4.7 - Prob. 4ECh. 4.7 - Prob. 5ECh. 4.7 - Prob. 6ECh. 4.7 - Write 20 as the direct sum of two of its...Ch. 4.7 - Prob. 8ECh. 4.7 - 9. Suppose that and are subgroups of the abelian...Ch. 4.7 - 10. Suppose that and are subgroups of the...Ch. 4.7 - 11. Assume that are subgroups of the abelian...Ch. 4.7 - Prob. 12ECh. 4.7 - 13. Assume that are subgroups of the abelian...Ch. 4.7 - 14. Let be an abelian group of order where and are...Ch. 4.7 - Let H1 and H2 be cyclic subgroups of the abelian...Ch. 4.7 - Prob. 16ECh. 4.7 - Prob. 17ECh. 4.7 - Prob. 18ECh. 4.7 - 19. a. Show that is isomorphic to , where the...Ch. 4.7 - Suppose that G and G are abelian groups such that...Ch. 4.7 - Prob. 21ECh. 4.7 - Prob. 22ECh. 4.7 - Prove that if r and s are relatively prime...Ch. 4.7 - Prob. 24ECh. 4.8 - True or False Label each of the following...Ch. 4.8 - Prob. 2TFECh. 4.8 - Prob. 3TFECh. 4.8 - Prob. 4TFECh. 4.8 - Prob. 5TFECh. 4.8 - Prob. 6TFECh. 4.8 - Prob. 1ECh. 4.8 - Prob. 2ECh. 4.8 - a. Find all Sylow 3-subgroups of the alternating...Ch. 4.8 - Find all Sylow 3-subgroups of the symmetric group...Ch. 4.8 - Prob. 5ECh. 4.8 - 6. For each of the following values of , describe...Ch. 4.8 - Let G be a group and gG. Prove that if H is a...Ch. 4.8 - Prob. 8ECh. 4.8 - 9. Determine which of the Sylow p-groups in each...Ch. 4.8 - Prob. 10ECh. 4.8 - 11. Show that is a generating set for the...Ch. 4.8 - Prob. 12ECh. 4.8 - If p1,p2,...,pr are distinct primes, prove that...Ch. 4.8 - Suppose that the abelian group G can be written as...Ch. 4.8 - 15. Assume that can be written as the direct sum...Ch. 4.8 - Prob. 16ECh. 4.8 - Prob. 17ECh. 4.8 - Prob. 18E
Knowledge Booster
Background pattern image
Algebra
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Orthogonality in Inner Product Spaces; Author: Study Force;https://www.youtube.com/watch?v=RzIx_rRo9m0;License: Standard YouTube License, CC-BY
Abstract Algebra: The definition of a Group; Author: Socratica;https://www.youtube.com/watch?v=QudbrUcVPxk;License: Standard Youtube License