Fundamentals Of Physics
Fundamentals Of Physics
11th Edition
ISBN: 9781119286240
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: WILEY
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 44, Problem 38P

Use Wien’s law (see Problem 37) to answer the following questions: (a) The cosmic background radiation peaks in intensity at a wavelength of 1.1mm. To what temperature does this correspond? (b) About 379 000 y after the big bang, the universe became transparent to electromagnetic radiation. Its temperature then was 2970 K. What was the wavelength at which the background radiation was then most intense?

Blurred answer
Students have asked these similar questions
The photons that make up the cosmic microwave background were emitted about 380,000 years after the Big Bang. Today, 13.8billion years after the Big Bang, the wavelengths of these photons have been stretched by a factor of about 1100 since they were emitted because lengths in the expanding universe have increased by that same factor of about 1100. Consider a cubical region of empty space in today’s universe 1.00 m on a side, with a volume of 1.00 m3. What was the length s0 of each side and the volume V0 of this same cubical region 380,000 years after the Big Bang? s0 = ? m V0 = ? m^3 Today the average density of ordinary matter in the universe is about 2.4×10−27 kg/m3. What was the average density ?(rho)0 of ordinary matter at the time that the photons in the cosmic microwave background radiation were emitted? (rho)0 = ? kg/m^3
Use Wien’s law to answer the following questions: (a) The cosmic background radiation peaks in intensity at a wavelength of 1.1 mm. To what temperature does this correspond? (b) About 379 000 y after the big bang, the universe became transparent to electromagnetic radiation. Its temperature then was 2970 K.What was the wavelength at which the background radiation was then most intense?
The photons that make up the cosmic microwave background were emitted about 380,000 years after the Big Bang. Today, 13.8 billion years after the Big Bang, the wavelengths of these photons have been stretched by a factor of about 1100 since they were emitted because lengths in the expanding universe have increased by that same factor of about 1100. Consider a cubical region of empty space in today's universe 1.00 m on a side, with a volume of 1.00 m³. What was the length so of each side and the volume V of this same cubical region 380,000 years after the Big Bang? So = Vo = Enter numeric value Today the average density of ordinary matter in the universe is about 2.4 × 10-27 kg/m³. What was the average density po of ordinary matter at the time that the photons in the cosmic microwave background radiation were emitted? Po = m m³ kg/m³
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Modern Physics
    Physics
    ISBN:9781111794378
    Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
    Publisher:Cengage Learning
    Text book image
    College Physics
    Physics
    ISBN:9781938168000
    Author:Paul Peter Urone, Roger Hinrichs
    Publisher:OpenStax College
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY