Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 43.2, Problem 43.3QQ
To determine
The ratio of the frequency of the photon that excited molecule 2 to the photon that excited molecule 1.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The two nuclei in the carbon monoxide (CO) molecules are 0.1128 nm apart.
The mass of the carbon atom is 1.993x10-26 kg.
The mass of the oxygen atom is 2.656x10-26 kg.
Spectroscopic measurements show that adjacent vibrational energy levels for the CO molecule are 0.269 eV.
What is the effective spring constant of the CO molecule? (Give your answer in N/m.)
The wavelength of the emitted photon from the hydrogen molecule H2 is 2.30 μm (micrometers) when the vibrational quantum number decreases by one.
What is the effective "spring constant" for the H2 molecule in N/m ?What is the "zero point" energy (in eV) of the molecular vibration?
The probability density function (PDF) for electrons to be detected on the x-axis
between 0 nm and 1.0 nm is shown below.
What is the probability of finding the electron between x = 0.5 nm and x =
1.0 nm?
|w(x)* (nm')
2.0
1.0
0.5
x (nm)
1.0
Chapter 43 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 43.1 - For each of the following atoms or molecules,...Ch. 43.2 - Prob. 43.2QQCh. 43.2 - Prob. 43.3QQCh. 43 - Prob. 1OQCh. 43 - Prob. 2OQCh. 43 - Prob. 3OQCh. 43 - Prob. 4OQCh. 43 - Prob. 5OQCh. 43 - Prob. 6OQCh. 43 - Prob. 7OQ
Ch. 43 - Prob. 1CQCh. 43 - Prob. 2CQCh. 43 - Prob. 3CQCh. 43 - Prob. 4CQCh. 43 - Prob. 5CQCh. 43 - Prob. 6CQCh. 43 - Prob. 7CQCh. 43 - Prob. 8CQCh. 43 - Discuss models for the different types of bonds...Ch. 43 - Prob. 10CQCh. 43 - Prob. 1PCh. 43 - Prob. 2PCh. 43 - Prob. 3PCh. 43 - Prob. 4PCh. 43 - Prob. 5PCh. 43 - Prob. 6PCh. 43 - Prob. 7PCh. 43 - Prob. 8PCh. 43 - Prob. 9PCh. 43 - Prob. 10PCh. 43 - Prob. 12PCh. 43 - Prob. 13PCh. 43 - Prob. 14PCh. 43 - Prob. 15PCh. 43 - Prob. 16PCh. 43 - The nuclei of the O2 molecule are separated by a...Ch. 43 - Prob. 18PCh. 43 - Prob. 19PCh. 43 - Prob. 20PCh. 43 - Prob. 21PCh. 43 - Prob. 22PCh. 43 - Prob. 23PCh. 43 - Prob. 24PCh. 43 - Prob. 25PCh. 43 - Prob. 27PCh. 43 - Prob. 28PCh. 43 - Prob. 29PCh. 43 - Prob. 30PCh. 43 - Prob. 31PCh. 43 - Prob. 32PCh. 43 - Prob. 33PCh. 43 - Prob. 34PCh. 43 - Prob. 35PCh. 43 - Prob. 36PCh. 43 - Prob. 37PCh. 43 - Prob. 38PCh. 43 - Prob. 39PCh. 43 - Prob. 40PCh. 43 - Prob. 41PCh. 43 - Prob. 42PCh. 43 - Prob. 43PCh. 43 - Prob. 44PCh. 43 - Prob. 45PCh. 43 - Prob. 46PCh. 43 - Prob. 47PCh. 43 - Prob. 49PCh. 43 - Prob. 50PCh. 43 - Prob. 51PCh. 43 - A direct and relatively simple demonstration of...Ch. 43 - Prob. 53PCh. 43 - Prob. 54APCh. 43 - Prob. 55APCh. 43 - Prob. 56APCh. 43 - Prob. 57APCh. 43 - Prob. 58APCh. 43 - Prob. 59APCh. 43 - Prob. 61APCh. 43 - Prob. 62APCh. 43 - Prob. 63CPCh. 43 - As an alternative to Equation 43.1, another useful...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Recall from Section 14.3 that the average kinetic energy of an atom in a monatomic ideal gas is given by KE=(3/2)kT, where k = 1.38 x 10-23 J/K and T is the Kelvin temperature of the gas. Determine the de Broglie wavelength of a helium atom (mass = 6.65 x 10-27 kg) that has the average kinetic energy at room temperature (292 K). Number i 7.38E-11 Units marrow_forwardYou are doing a senior thesis project that involves research into astronomical observations. In interstellar space, highly excited hydrogen atoms called Rydberg atoms have been observed, and can be useful in analyzing astronomical environments. In these atoms, the quantum number n is very high. In preparation for an upcoming publication, your supervisor asks you to determine the quantum number of a Rydberg atom for which the classical and quantum predictions of the wavelength of a Δn = 1 transition are within 0.500% of each other.arrow_forwardHydrogen atoms in the atmosphere of the sun can exist in different energy states. The difference between the lowest energy state (the ground state) and the second to lowest energy state (the first excited state) is about 2.5 eV. The temperature of the sun’s atmosphere is about 5800 K (so kBT = 0.5 eV). What will be the ratio of the number of atoms in the first excited state divided by the number of atoms in the ground state?arrow_forward
- atoms can occupy only certain discrete energy levels. Consider a gas at a temperature of 2 500 K whose atoms can occupy only two energy levels separated by 1.50 eV, where 1 eV (electron volt) is an energy unit equal to 1.60 × 10-19 J. Determine the ratio of the number of atoms in the higher energy level to the number in the lower energy level.arrow_forwardhow do you do part b of this frq? this is a non graded practice worksheetarrow_forwardSuppose that you have a solution containing a substance whose molecule has two quantum states corresponding to different orientations of a certain subgroup of atoms. The energy difference between these two molecular states is ΔE = 0.10 eV. You are running an experiment where no more than 5% percent of the molecules can be in the higher-energy state, or it will cause unacceptable noise. Can you run the experiment at room temperature, or do you need to cool your solution?arrow_forward
- One cubic meter of atomic hydrogen at 0°C at atmospheric pressure contains approximately 2.70 × 10 25 atoms. The first excited state of the hydrogen atom has an energy of 10.2 eV above that of the lowest state, called the ground slate. Use the Boltzmann factor to find the number of atoms in the first excited slate (a) at 0 ºC and at (b) (1.00 × 10 4 )°C.arrow_forwardhow do you do part a of question 19, towards the bottom of the page? this is a non graded practice worksheetarrow_forwardA potential well has 4 energy levels as given here: Energy of the state (eV) 13 12 9 4 Suppose that there are three electrons in the well, and that the system is in the first excited state. If the system emits a photon, what energy could the photon have? O (a) 3 eV Ⓒ (b) 5 eV O (c) 4 eV O (d) 8 eV (e) 9 eV x X 0%arrow_forward
- An atom has a mass of 1.17 × 10-26 kg. If we consider this atom vibrating with simple harmonic motion with a force constant of k =49.8 N/m (c = 3.00 × 108 m/s, h = 6.626 × 10-34 J ∙ s, ħ = 1.055 × 10-34 J ∙ s, 1 eV = 1.60 × 10-19 J) Determine the ground state energy of this system, in hundredths of electron Volts. (answer x 10-2 eV). Please give your answer with two decimal places.arrow_forwardTrue or False Questions : Non-conducting materials can be studied by scanning tunneling microscope(STM). 0 True 0 False Backscattered electron detection should be employed to detect different phases in a material. 0 True 0 False Backscattered electrons are analyzed by TEM. 0 True 0 False IR spectroscopy is used to determine functional groups/bonding in molecules. 0 True 0 False Backscattered electrons have lower energy than secondary electrons. 0 True 0 False Secondary electrons are used in SEM. 0 True 0 False Energy dispersive spectroscopy (EDS) analyzes x-rays. 0 True 0 False XRD peaks broaden as nanoparticle size decreases. 0 True 0 False X-ray diffraction (XRD) peak position shifts to higher 29 angles as the distance between adjacent crystal planes increases. 0 True 0 False scanning electron microscopy (SEM) exhibits higher resolution than transmission electron microscopy (TEM) 0 True O False The G-band in a Raman spectrum of CNTs is attributed to defects. 0 True O False EDS…arrow_forwardThe figure shows a model of the energy levels of an atom. The atom is initially in state W, which is the ground state for the atom. After a short amount of time, the atom then transitions to state X. The atom then transitions to state Y before transitioning to state Z. The atom then transitions back to state W. Which of the following descriptions is correct about the atom as it transitions from state W to each subsequent state until it finally returns to its original state?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning