Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 43, Problem 58AP
To determine
The depth of the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider the wave function shown below. If the linear molecule has a length L=1.6 nm, What is the value of the u(x) at the the point
indicated by the arrow for an n=1 electron? Give your answer in nm-1/2 to 2 decimal places. Do not include bond angle corrections. Do
NOT include units in your answer.
x=0
x=2/3L
x=L
The graph shows the potential energy curve for a system of two oxygen atoms.
Imagine the two atoms are in a bound state. If they are 0.1 nm apart and have no kinetic energy, what is the minimum amount of energy (in Joules) that needs to be added to the system in order to break the bond?
Assuming that the H² molecule behaves like a harmonic oscillator with force
constant of 573 N/m. Calculate the vibrational quantum number for which the
molecule would dissociate at 4.5 eV.
Chapter 43 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 43.1 - For each of the following atoms or molecules,...Ch. 43.2 - Prob. 43.2QQCh. 43.2 - Prob. 43.3QQCh. 43 - Prob. 1OQCh. 43 - Prob. 2OQCh. 43 - Prob. 3OQCh. 43 - Prob. 4OQCh. 43 - Prob. 5OQCh. 43 - Prob. 6OQCh. 43 - Prob. 7OQ
Ch. 43 - Prob. 1CQCh. 43 - Prob. 2CQCh. 43 - Prob. 3CQCh. 43 - Prob. 4CQCh. 43 - Prob. 5CQCh. 43 - Prob. 6CQCh. 43 - Prob. 7CQCh. 43 - Prob. 8CQCh. 43 - Discuss models for the different types of bonds...Ch. 43 - Prob. 10CQCh. 43 - Prob. 1PCh. 43 - Prob. 2PCh. 43 - Prob. 3PCh. 43 - Prob. 4PCh. 43 - Prob. 5PCh. 43 - Prob. 6PCh. 43 - Prob. 7PCh. 43 - Prob. 8PCh. 43 - Prob. 9PCh. 43 - Prob. 10PCh. 43 - Prob. 12PCh. 43 - Prob. 13PCh. 43 - Prob. 14PCh. 43 - Prob. 15PCh. 43 - Prob. 16PCh. 43 - The nuclei of the O2 molecule are separated by a...Ch. 43 - Prob. 18PCh. 43 - Prob. 19PCh. 43 - Prob. 20PCh. 43 - Prob. 21PCh. 43 - Prob. 22PCh. 43 - Prob. 23PCh. 43 - Prob. 24PCh. 43 - Prob. 25PCh. 43 - Prob. 27PCh. 43 - Prob. 28PCh. 43 - Prob. 29PCh. 43 - Prob. 30PCh. 43 - Prob. 31PCh. 43 - Prob. 32PCh. 43 - Prob. 33PCh. 43 - Prob. 34PCh. 43 - Prob. 35PCh. 43 - Prob. 36PCh. 43 - Prob. 37PCh. 43 - Prob. 38PCh. 43 - Prob. 39PCh. 43 - Prob. 40PCh. 43 - Prob. 41PCh. 43 - Prob. 42PCh. 43 - Prob. 43PCh. 43 - Prob. 44PCh. 43 - Prob. 45PCh. 43 - Prob. 46PCh. 43 - Prob. 47PCh. 43 - Prob. 49PCh. 43 - Prob. 50PCh. 43 - Prob. 51PCh. 43 - A direct and relatively simple demonstration of...Ch. 43 - Prob. 53PCh. 43 - Prob. 54APCh. 43 - Prob. 55APCh. 43 - Prob. 56APCh. 43 - Prob. 57APCh. 43 - Prob. 58APCh. 43 - Prob. 59APCh. 43 - Prob. 61APCh. 43 - Prob. 62APCh. 43 - Prob. 63CPCh. 43 - As an alternative to Equation 43.1, another useful...
Knowledge Booster
Similar questions
- Assume that the H2 molecule behaves exactly like a harmonic oscillator with a force constant of 573N/m. (a) Find the energy (in eV) of its ground and first excited vibrational states. (b) Find the vibrational quantum number that approximately corresponds to its 4.5-eV dissociation energy.arrow_forwardThe equilibrium dissociation energy of O2 is De = 4.314 ev. The basic vibration frequency of O2 is f = 1620.0 cm -1. So how much energy is actually needed to dissociate O2 molecules at n = 3 vibrational level? Give your answer in EV.arrow_forwardThe figure shows a potential energy curve for the interaction of two neutral atoms. The two-atom system is in a vibrational state indicated by the heavy solid horizontal line. O eV -0.2 eV+ -0.4 eVF -0.6 eV -0.8 eV- -1.0 eV- -1.2 eV- -1.4 eVF -1.6 ev (a) At r = r1, what are the approximate values of the kinetic energy K, the potential energy U, and the quantity K+U? K = eV U = eV K+U = eV (b) What minimum (positive) amount of energy must be supplied to cause these two atoms to separate? eV Additi. L Matorialsarrow_forward
- A diatomic molecule begins in the vibration-rotation state characterized by n = 1, J = 7. It then absorbs a photon of light to make a R-branch transition. Which of the following represents a possible final state for this molecule? On=0,J = 7 n=2, J = 7 n = 1, J = 8 On=2, J = 8 n = 1, J = 6 n = 2, J = 6arrow_forwardGggarrow_forwardhttps://www.compadre.org/PQP/applications/prob14_4.cfm The potential energy curves are shown (PE given in eV and distance is given in Bohr radii) for two diatomic molecules with the same reduced mass. What part of these curves relates to the moment of inertia and keff? Determine which molecule has the larger moment of inertia and the larger keff.arrow_forward
- Imagearrow_forwardWhat is the energy separation (ΔE) between the n = 4 and n = 5 states for an F2 molecule trapped within in a one-dimension well of length 3.0 cm? At what value of n does the energy of the molecule reach ¼kBT at 450 K, and what is the separation between this energy level and the one immediately above it?arrow_forwardThe vibrational wavenumber of HBr is 264 cm-1 Evaluate the vibrational partition function of HBr at 298 K using both the exact and the approximate expressions.arrow_forward
- For a spherical sodium particle of 25 nm radius crystalizing in a BCC structure having a density of 1.51 g/cm^3, estimate the surface energy of the particle. b. Estimate the surface energy of {100},{110} and {111} surfaces of an FCC lattice with bond strength of 7.97 eV and lattice parameter of 4.2 Å. Also compare the energies.arrow_forwardIn vibrational spectroscopy, the fundamental band refers to a transition from the n = 0 state to n = 1, and the first overtone would be from the n = 0 state to n = 2. For carbon monoxide (CO), the fundamental occurs at 2143.4 cm-¹ and the first overtone at 4259.6 cm-¹. (a) For an anharmonic oscillator, the energy levels can be written (in wavenumbers) as 2 En ) ²³ = ve (n + ¹) - xeve (n +. + Find the values of ve and xeve from the fundamental and overtone transitions in CO. Report your results in units of cm-¹. (b) Use the values found for ve and xeve in part (a) to estimate the number of bound energy levels in CO. (Hint: For an anharmonic oscillator this number is determined by the point at which the spacing between consecutive levels goes to zero.) (c) If CO could be modeled as a Morse oscillator, and the values of ve and xeve provide energy levels consistent with the Morse potential what would be the value of the parameter D in units of cm-¹? How does this compare with the observed…arrow_forwardThe two nuclei in the carbon monoxide (CO) molecules are 0.1128 nm apart. The mass of the carbon atom is 1.993x10-26 kg. The mass of the oxygen atom is 2.656x10-26 kg. Spectroscopic measurements show that adjacent vibrational energy levels for the CO molecule are 0.269 eV. What is the effective spring constant of the CO molecule? (Give your answer in N/m.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax