Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
expand_more
expand_more
format_list_bulleted
Question
Chapter 4.3, Problem 4.25P
(a)
To determine
The value
(b)
To determine
The value of
(c)
To determine
The value of the normalization constant by direct integration.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Statistical Physics. Microcanonical Ensemble.
Do the problem in 1st quandrant. Explain how you determined the sign of each derivative. Draw pictures to illustrate your reasoning.
Let f(x, y) = x² + 4y² and let C be the line segment from (0, 0) to (2, 2).
You are going to compute
là
Vf. dr two ways: first, using the method learned in section 6.2 for
с
evaluating line integrals, and second, using the fundamental theorem for line integrals.
First way:
Vf=(
C can be parameterized by r(t) = (t,
Then '(t)
and ▼ ƒ(r(t)) = {
so sv.
So
2
= [²
=
2
- 1²
||
(
Vf. dr
▼ f(r(t)). r' (t)dt
dt
).
>
> for 0 ≤ t ≤ 2.
).
Chapter 4 Solutions
Introduction To Quantum Mechanics
Ch. 4.1 - Prob. 4.1PCh. 4.1 - Prob. 4.3PCh. 4.1 - Prob. 4.4PCh. 4.1 - Prob. 4.5PCh. 4.1 - Prob. 4.6PCh. 4.1 - Prob. 4.7PCh. 4.1 - Prob. 4.8PCh. 4.1 - Prob. 4.9PCh. 4.1 - Prob. 4.10PCh. 4.1 - Prob. 4.11P
Ch. 4.2 - Prob. 4.12PCh. 4.2 - Prob. 4.13PCh. 4.2 - Prob. 4.14PCh. 4.2 - Prob. 4.15PCh. 4.2 - Prob. 4.16PCh. 4.2 - Prob. 4.17PCh. 4.2 - Prob. 4.18PCh. 4.2 - Prob. 4.19PCh. 4.2 - Prob. 4.20PCh. 4.3 - Prob. 4.21PCh. 4.3 - Prob. 4.22PCh. 4.3 - Prob. 4.23PCh. 4.3 - Prob. 4.24PCh. 4.3 - Prob. 4.25PCh. 4.3 - Prob. 4.26PCh. 4.3 - Prob. 4.27PCh. 4.4 - Prob. 4.28PCh. 4.4 - Prob. 4.29PCh. 4.4 - Prob. 4.30PCh. 4.4 - Prob. 4.31PCh. 4.4 - Prob. 4.32PCh. 4.4 - Prob. 4.33PCh. 4.4 - Prob. 4.34PCh. 4.4 - Prob. 4.35PCh. 4.4 - Prob. 4.36PCh. 4.4 - Prob. 4.37PCh. 4.4 - Prob. 4.38PCh. 4.4 - Prob. 4.39PCh. 4.4 - Prob. 4.40PCh. 4.4 - Prob. 4.41PCh. 4.5 - Prob. 4.42PCh. 4.5 - Prob. 4.43PCh. 4.5 - Prob. 4.44PCh. 4.5 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76P
Knowledge Booster
Similar questions
- Problem 1.17 A particle is represented (at time=0) by the wave function A(a²-x²). if-a ≤ x ≤+a. 0, otherwise. 4(x, 0) = { (a) Determine the normalization constant A. (b) What is the expectation value of x (at time t = 0)? (c) What is the expectation value of p (at time t = 0)? (Note that you cannot get it from p = md(x)/dt. Why not?) (d) Find the expectation value of x². (e) Find the expectation value of p².arrow_forwardShow that a gaussian psi (x) = e ^(-ax^2) can be an eigenfunction of H(hat) for harmonic oscillator 1. Compute T(hat)*psi 2. Compute Vhat* psi - assume V operator is 1/2w^2x^2 3. Write out Hbar*psi and identify terms so Hber*psi=E*psi is true 4. From cancellation find a 5. insert back a to Schrodinger eq above and find Earrow_forwardFor an Einstein solid with each of the following values of Nand q, list all of the possible microstates, count them, and verify formula 2.9. N = 4, q = 2arrow_forward
- Determine the transmission coefficient for a rectangular barrier (same as Equation 2.127, only with +Vo in the region -a Vo (note that the wave function inside the barrier is different in the three cases). Partial answer: For Earrow_forwardSubject: Mathematical Physics Topic: Functions of A Complex Variable-Analytic Function Answer the following functions and determine whether the following functions are Analytic. Please answer neatly and with details.arrow_forwardFigure 1.30arrow_forwardProblem 2.11 (a) Compute (x). (p). (x²), and (p²), for the states yo (Equation 2.60) and 1 (Equation 2.63), by explicit integration. Comment: In this and other problems involving the harmonic oscillator it simplifies matters if you introduce the variable = √mo/hx and the constanta (m/h)¹/4 (b) Check the uncertainty principle for these states. (c) Compute (T) and (V) for these states. (No new integration allowed!) Is their sum what you would expect?arrow_forwardDIRECTION: Please provide a step-by-step and clear solution to each of the problems below. Z 4) Show that (7.a)² = a² 1₂, where ở = σ¸î + σ¸ĵ + σ₂â‚ ā = axî + ayĵ + a₂î, and 1₂ is the usual 2 and oz x 2 identity matrix. Further, the components ax, ay, and a are constants, and σx, y, are the Pauli spin matrices given in the previous item, Item 3.arrow_forwardProblem 3.30 Derive the transformation from the position-space wave function to the “energy-space” wave function using the technique of Example 3.9. Assume that the energy spectrum is discrete, and the potential is time-independent.arrow_forwardProblem 3.27 Sequential measurements. An operator Ä, representing observ- able A, has two normalized eigenstates 1 and 2, with eigenvalues a1 and a2, respectively. Operator B, representing observable B, has two normalized eigen- states ø1 and ø2, with eigenvalues b1 and b2. The eigenstates are related by = (3ø1 + 402)/5, 42 = (401 – 302)/5. (a) Observable A is measured, and the value aj is obtained. What is the state of the system (immediately) after this measurement? (b) If B is now measured, what are the possible results, and what are their probabilities? (c) Right after the measurement of B, A is measured again. What is the proba- bility of getting a¡? (Note that the answer would be quite different if I had told you the outcome of the B measurement.)arrow_forwardSolve the following:arrow_forwardPlease Asaparrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON