Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4.2, Problem 4.17P
To determine
Ground state of hydrogen in
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Consider a composite state of an electron with total angular momentum j1 = 1/2 and a proton with angular momentum j2 = 3/2. Find all the eigenstates of |j1,j2;j,m⟩ as the linear combination of product states of angular momentum of electron and proton |j1,j2;m1,m2⟩. Give the values of Clebsch-Gordon coefficients you get from here. If the system is found in state |j1 = 1/2,j2 = 3/2;j = 1,m = −1⟩, what is the probability that j1z = −1/2 and what is the probability that j1z = 1/2
Problem 3: Chemical potential of an Einstein solid.
Consider an Einstein solid for which both N and q are much greater than 1. Think of each
ocillator as a separate “particle".
a) Show that the chemical potential is
H = -kT In (**e)
b) Discuss this result in the limits N » q and N « q, concentrating on the question of how
much S increases when another particle carrying no energy is added to the system. Does
the formula make intuitive sense?
Consider a composite state of spin j1 = s = 1/2 and angular momentum j2 = l = 2
of an electron. Find all the eigenstates of |j1, j2; j,m〉 as the linear combination of
product states of spin and angular momentum. Give the values of Clebsch-Gordon
coefficients you get from here.
Chapter 4 Solutions
Introduction To Quantum Mechanics
Ch. 4.1 - Prob. 4.1PCh. 4.1 - Prob. 4.3PCh. 4.1 - Prob. 4.4PCh. 4.1 - Prob. 4.5PCh. 4.1 - Prob. 4.6PCh. 4.1 - Prob. 4.7PCh. 4.1 - Prob. 4.8PCh. 4.1 - Prob. 4.9PCh. 4.1 - Prob. 4.10PCh. 4.1 - Prob. 4.11P
Ch. 4.2 - Prob. 4.12PCh. 4.2 - Prob. 4.13PCh. 4.2 - Prob. 4.14PCh. 4.2 - Prob. 4.15PCh. 4.2 - Prob. 4.16PCh. 4.2 - Prob. 4.17PCh. 4.2 - Prob. 4.18PCh. 4.2 - Prob. 4.19PCh. 4.2 - Prob. 4.20PCh. 4.3 - Prob. 4.21PCh. 4.3 - Prob. 4.22PCh. 4.3 - Prob. 4.23PCh. 4.3 - Prob. 4.24PCh. 4.3 - Prob. 4.25PCh. 4.3 - Prob. 4.26PCh. 4.3 - Prob. 4.27PCh. 4.4 - Prob. 4.28PCh. 4.4 - Prob. 4.29PCh. 4.4 - Prob. 4.30PCh. 4.4 - Prob. 4.31PCh. 4.4 - Prob. 4.32PCh. 4.4 - Prob. 4.33PCh. 4.4 - Prob. 4.34PCh. 4.4 - Prob. 4.35PCh. 4.4 - Prob. 4.36PCh. 4.4 - Prob. 4.37PCh. 4.4 - Prob. 4.38PCh. 4.4 - Prob. 4.39PCh. 4.4 - Prob. 4.40PCh. 4.4 - Prob. 4.41PCh. 4.5 - Prob. 4.42PCh. 4.5 - Prob. 4.43PCh. 4.5 - Prob. 4.44PCh. 4.5 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 3) Consider the collection of identical harmonic oscillators (as in the Einstein floor). The permitted energies of each oscilator (E = nhf (n=0, 1, 2.0, hf. 2hf and so on. a) Calculate the splitting function of a single harmonic oscitor. What is the splitting function of N oscilator? wwww wwwwww www www b) Obtain the average energy of the T-temperature N oscilator from the split function. c) Calculate the heat capacity of this system and T → 0 ve T → 0 in limits, what is the heat capacity of the system? Are these results in line with the experiment? Why? What's the right theory about that? w w d) Find the Helmholtz free energy of this system. www ww e) which gives the entropy of this system as a function of temperature. ww wd wwww wwarrow_forwardEvaluate the following integral: Answer: Check [x³8(x + 2)dx=arrow_forwardCalculate |[Pß|z|Q«}|² if Þµ is the 2pº, i.e., [2,1,0) state and Oß is Is state (1,0,0)). Here I want you to evaluate the integral and give me a number with units.arrow_forward
- A system with j = 35 is in the state |ψ⟩= 1/√2 |35,35⟩ + 1/2 |35,34⟩ − 1/2 |35,−20⟩. The state is written in |j,m⟩ notation (m is the Jz projection). Find ⟨Jz⟩ and ∆Jz for this state. Find ⟨Jx⟩ and ∆Jx for this state. (Note: This must be done by hand with all work shown; also do this in bracket notation instead of working out the matrices)arrow_forwardQUESTION 3: Abstract angular momentum operators: In this problem you may assume t commutation relations between the general angular momentum operators Ĵ, Ĵy, Ĵz. Use whenev possible the orthonormality of normalised angular momentum eigenstate |j, m) and that α = Îx±iĴy, Ĵ²|j,m) = ħ²j(j + 1)|j,m) and Ĵz|j,m) (a) Express ĴĴ_ in terms of Ĵ² and Ĵ₂. = ħmlj, m). (b) Using the result from (a) find the expectation value (j,m|εÎ_|j,m). (This is the nor squared of the state Î_|j,m).)arrow_forwardFor the function f(z) = 2+2 of complex variable z, which of the following statements is incorrect? z2-2z Select one: Oa. z=0 is a simple pole with residue -1 Ob. z=2 is a simple pole with residue 2 ○ c. Both the first two options are correct O d. None of the first two options are correctarrow_forward
- A particle with mass m is in a field and has the state (in spherical coordinates) : Where N > 0 and a > 0 are fixed numbers. Determine the average kinetic energy of the particles.arrow_forward1. (a) Simplify the following number to the r+ iy form and to the re form 3+i 2+i (b) Find the absolute value and then plot the number in the complex plane.arrow_forwardProve the following commutator identity: [AB, C] = A[B. C]+[A. C]B.arrow_forward
- Asap plzzzarrow_forwardCalculate Z for a single oscillator in an Einstein solid at a temperature T=4TE=4ϵ/kBT=4 TE=4 ϵ/kB . The value of Z isarrow_forwardWhich one of the following statements about the exchange energy of the few lowest excited states of helium, in which the two electrons are in different subshells, is incorrect? Select an answer and submit. For keyboard navigation, use the up/down arrow keys to select an answer. b с d e In the absence of the exchange energy, the degeneracy between 1s¹2s¹ and 1s¹2p¹ configurations would only be lifted by relativistic corrections. For a given configuration and L the exchange energy favours (ie the energy is lower for) S-1 compared with S=0 O For a given configuration and L the exchange energy favours states that are spatially anti-symmetric The exchange energy gives larger shifts in the levels than relativistic corrections L, S remain good quantum numbers in the presence of the exchange energyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning