Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
5th Edition
ISBN: 9780321816252
Author: C. Henry Edwards, David E. Penney, David Calvis
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4.3, Problem 17P
Program Plan Intro
Using Range-Kutta method find the horizontal distance the ball travels before it hits the ground and calculate the flight time with the given inclination angle.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For an object of mass m=3 kg to slide without friction up the rise of height h=1 m shown, it must have a
minimum initial kinetic energy (in J) of:
h
O a. 40
O b. 20
O c. 30
O d. 10
Q2/ The pipe in Fig. is driven by pressurized air in the tank. What is the
friction factor (f) when the water flow rate through pipe is ( 85 m/hr ) and the
pressure at point 1 is (2500 kPa).
(25Marks)
30m
smooth pipe
d = 70mm
open jet
P1
1
90m
15m
60m
5
Chapter 4 Solutions
Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
Ch. 4.1 - Prob. 1PCh. 4.1 - Prob. 2PCh. 4.1 - Prob. 3PCh. 4.1 - Prob. 4PCh. 4.1 - Prob. 5PCh. 4.1 - Prob. 6PCh. 4.1 - Prob. 7PCh. 4.1 - Prob. 8PCh. 4.1 - Prob. 9PCh. 4.1 - Prob. 10P
Ch. 4.1 - Prob. 11PCh. 4.1 - Prob. 12PCh. 4.1 - Prob. 13PCh. 4.1 - Prob. 14PCh. 4.1 - Prob. 15PCh. 4.1 - Prob. 16PCh. 4.1 - Prob. 17PCh. 4.1 - Prob. 18PCh. 4.1 - Prob. 19PCh. 4.1 - Prob. 20PCh. 4.1 - Prob. 21PCh. 4.1 - Prob. 22PCh. 4.1 - Prob. 23PCh. 4.1 - Prob. 24PCh. 4.1 - Prob. 25PCh. 4.1 - Prob. 26PCh. 4.1 - Prob. 27PCh. 4.1 - Prob. 28PCh. 4.1 - Prob. 29PCh. 4.1 - Prob. 30PCh. 4.1 - Prob. 31PCh. 4.1 - Prob. 32PCh. 4.1 - Prob. 33PCh. 4.1 - Repeat Problem 33, except with the generator...Ch. 4.1 - A particle of mass m moves in the plane with...Ch. 4.1 - Prob. 36PCh. 4.1 - Prob. 37PCh. 4.2 - Prob. 1PCh. 4.2 - Prob. 2PCh. 4.2 - Prob. 3PCh. 4.2 - Prob. 4PCh. 4.2 - Prob. 5PCh. 4.2 - Prob. 6PCh. 4.2 - Prob. 7PCh. 4.2 - Prob. 8PCh. 4.2 - Prob. 9PCh. 4.2 - Prob. 10PCh. 4.2 - Prob. 11PCh. 4.2 - Prob. 12PCh. 4.2 - Prob. 13PCh. 4.2 - Prob. 14PCh. 4.2 - Prob. 15PCh. 4.2 - Prob. 16PCh. 4.2 - Prob. 17PCh. 4.2 - Prob. 18PCh. 4.2 - Prob. 19PCh. 4.2 - Prob. 20PCh. 4.2 - Suppose that L1=a1D2+b1D+c1 and L2=a2D2+b2D+c2,...Ch. 4.2 - Suppose that L1x=tDx+x and that L2x=Dx+tx. Show...Ch. 4.2 - Prob. 23PCh. 4.2 - Prob. 24PCh. 4.2 - Prob. 25PCh. 4.2 - Prob. 26PCh. 4.2 - Prob. 27PCh. 4.2 - Prob. 28PCh. 4.2 - Prob. 29PCh. 4.2 - Prob. 30PCh. 4.2 - Prob. 31PCh. 4.2 - Prob. 32PCh. 4.2 - Prob. 33PCh. 4.2 - Prob. 34PCh. 4.2 - Prob. 35PCh. 4.2 - Prob. 36PCh. 4.2 - Prob. 37PCh. 4.2 - Prob. 38PCh. 4.2 - Prob. 39PCh. 4.2 - Prob. 40PCh. 4.2 - Prob. 41PCh. 4.2 - Prob. 42PCh. 4.2 - Prob. 43PCh. 4.2 - Prob. 44PCh. 4.2 - Prob. 45PCh. 4.2 - Prob. 46PCh. 4.2 - Prob. 47PCh. 4.2 - Prob. 48PCh. 4.3 - Prob. 1PCh. 4.3 - Prob. 2PCh. 4.3 - Prob. 3PCh. 4.3 - Prob. 4PCh. 4.3 - Prob. 5PCh. 4.3 - Prob. 6PCh. 4.3 - Prob. 7PCh. 4.3 - Prob. 8PCh. 4.3 - Prob. 9PCh. 4.3 - Prob. 10PCh. 4.3 - Prob. 11PCh. 4.3 - Prob. 12PCh. 4.3 - Prob. 13PCh. 4.3 - Prob. 14PCh. 4.3 - Suppose that a projectile is fired straight upward...Ch. 4.3 - Prob. 16PCh. 4.3 - Prob. 17PCh. 4.3 - Prob. 18PCh. 4.3 - Prob. 19PCh. 4.3 - Prob. 20PCh. 4.3 - Suppose that an artillery projectile is fired from...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- 2. Heat conduction in a square plate Three sides of a rectangular plate (@ = 5 m, b = 4 m) are kept at a temperature of 0 C and one side is kept at a temperature C, as shown in the figure. Determine and plot the ; temperature distribution T(x, y) in the plate. The temperature distribution, T(x, y) in the plate can be determined by solving the two-dimensional heat equation. For the given boundary conditions T(x, y) can be expressed analytically by a Fourier series (Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley and Sons, 1993):arrow_forwardSolve the following equations. Be sure to check the potential solution(s) in the original equation, to see whether it (they) are in the domain. (a) log, (r? –x – 2) = 2arrow_forwardProblem 1 The position x as a function of time of a particle that moves along a straight line is given by: r(1) = (-3 + 41)c 0. f1 0.1t The velocity v(t) of the particle is determined by the derivative of r(t) with respect to t, and the accelerationa(t) is determined by the derivative ofv(t) with respect to t. Derive the expressions for the velocity and acceleration of the particle, and make plots of the position, velocity, and acceleration as functions of time for0arrow_forwardA 200 gallon tank initially contains 100 gallons of water with 20 pounds of salt. A salt solution with 1/5 pound of salt per gallon is added to the tank at 10 gal/min, and the resulting mixture is drained out at 5 gal/min. Let Q(t) denote the quantity (lbs) of salt at time t (min). (a) Write a differential equation for Q(t) which is valid up until the point at which the tank overflows. Q' (t) = = (b) Find the quantity of salt in the tank as it's about to overflow. esc C ✓ % 1 1 a 2 W S # 3 e d $ 4 f 5 rt 99 6 y & 7 h O u * 00 8 O 1 9 1 Oarrow_forwardSITUATION 1 (Fluid Flow in a Closed Conduit) Consider a fluid, with density (p) of 998.21 kg/m³ and dynamic viscosity (u) of 1.002 x 103 N-s/m², flowing in a 2000-meter long, 50-mm diameter smooth round pipe with velocity of 2.5 m/s. The energy loss on the pipe flow (he) due to friction between the pipe and the fluid is determined using Darcy-Weisbach equation, given as h₁ = f (²) (1/1) where f is the friction factor, L is the length of the pipe, D is the diameter of the pipe, V is the velocity of the flow, and g is the gravitational acceleration. The friction factor may be determined using an empirical equation developed by Nikuradse for flow in smooth pipes, given as 1 =0.869 In (Re√7)-0.8 where Re is the Reynolds number of the flow, determined as VDp R₂ = μl The friction factor equation given is only valid for flows with Reynolds number higher than 4000 (turbulent flow). Guide Questions: Determine the Reynolds number of the flow. Is the Nikuradse equation for friction factor…arrow_forwardSolve botharrow_forwardQ.4 In an experimental setup, mineral oil is filled in between the narrow gap of two horizontal smooth plates. The setup has arrangements to maintain the plates at desired uniform temperatures. At these temperatures, ONLY the radiative heat flux is negligible. The thermal conductivity of the oil does not vary perceptibly in this temperature range. Consider four experiments at steady state under different experimental conditions, as shown in the figure Q1. The figure shows plate temperatures and the heat fluxes in the vertical direction. What is the steady state heat flux (in W m) with the top plate at 90°C and the bottom plate at 45°C? [4] 30°C 70°C 40°C 90°C flux = 39 Wm-2 flux =30 Wm2 flux = 52 Wm 2 flux ? Wm-2 60°C 35°C 80°C 45°C Experiment 1 Experiment 2 Experiment 3 Experiment 4arrow_forwardA rope of negligible mass is wrapped around a 225-kg solid cylinder of radius 0.400 m. The cylinder is suspended several meters off the ground with its axis oriented horizontally, and turns on that axis without friction. (a) If a 75.0-kg man takes hold of the free end of the rope and falls under the force of gravity, what is his acceleration? m/s² (b) What is the angular acceleration of the cylinder? rad/s² (c) If the mass of the rope were not neglected, what would happen to the angular acceleration of the cylinder as the man falls?arrow_forwardA reservoir discharging water through sluices at a depth hbelow the water surface area Afor various values has given below: hft1011121314( . .)Asqft9501070120013501530If tdenotes time in minutes, the rate of fall of the surface is given by 48dhhAdtEstimate the time taken for the water level to fall from 14 to 10 ft. above the sluices.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Operations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks Cole
Operations Research : Applications and Algorithms
Computer Science
ISBN:9780534380588
Author:Wayne L. Winston
Publisher:Brooks Cole