Concept explainers
a. A vector is any element of a vector space.
b. If u is a vector in a vector space V, then (− 1)u is the same as the negative of u.
c. A vector space is also a subspace.
d. ℝ2 is a subspace of ℝ3.
e. A subset H of a vector space V is a subspace of V if the following conditions are satisfied: (i) the zero vector of V is in H, (ii) u, v, and u + v are in H, and (iii) c is a scalar and cu is in H.
Learn your wayIncludes step-by-step video
Chapter 4 Solutions
Linear Algebra and Its Applications (5th Edition)
Additional Math Textbook Solutions
College Algebra with Modeling & Visualization (5th Edition)
Elementary Statistics: Picturing the World (7th Edition)
Basic Business Statistics, Student Value Edition
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Pre-Algebra Student Edition
Thinking Mathematically (6th Edition)
- Prove that in a given vector space V, the additive inverse of a vector is unique.arrow_forwardLet u, v, and w be any three vectors from a vector space V. Determine whether the set of vectors {vu,wv,uw} is linearly independent or linearly dependent.arrow_forwardWhich vector spaces are isomorphic to R6? a M2,3 b P6 c C[0,6] d M6,1 e P5 f C[3,3] g {(x1,x2,x3,0,x5,x6,x7):xiisarealnumber}arrow_forward
- Find a basis for R2 that includes the vector (2,2).arrow_forwardProve that if A is similar to B and A is diagonalizable, then B is diagonalizable.arrow_forwardDetermine whether the set R2 with the operations (x1,y1)+(x2,y2)=(x1x2,y1y2) and c(x1,y1)=(cx1,cy1) is a vector space. If it is, verify each vector space axiom; if it is not, state all vector space axioms that fail.arrow_forward
- Let A be an mn matrix where mn whose rank is r. a What is the largest value r can be? b How many vectors are in a basis for the row space of A? c How many vectors are in a basis for the column space of A? d Which vector space Rk has the row space as a subspace? e Which vector space Rk has the column space as a subspace?arrow_forwardIn Exercises 24-45, use Theorem 6.2 to determine whether W is a subspace of V. V=3, W={[aba+b+1]}arrow_forwardIllustrate properties 110 of Theorem 4.2 for u=(2,1,3,6), v=(1,4,0,1), w=(3,0,2,0), c=5, and d=2. THEOREM 4.2Properties of Vector Addition and Scalar Multiplication in Rn. Let u,v, and w be vectors in Rn, and let c and d be scalars. 1. u+v is vector in Rn. Closure under addition 2. u+v=v+u Commutative property of addition 3. (u+v)+w=u+(v+w) Associative property of addition 4. u+0=u Additive identity property 5. u+(u)=0 Additive inverse property 6. cu is a vector in Rn. Closure under scalar multiplication 7. c(u+v)=cu+cv Distributive property 8. (c+d)u=cu+du Distributive property 9. c(du)=(cd)u Associative property of multiplication 10. 1(u)=u Multiplicative identity propertyarrow_forward
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage