Fundamentals Of Physics
11th Edition
ISBN: 9781119286240
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 40, Problem 68P
To determine
To calculate:
(a) the predicted value of the time taken by the go-and-return laser pulse from the Earth to the Moon.
(b) the uncertainty in time for the go-and-return pulse to travel.
(c) the angular divergence of the laser beam on the Moon.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Lunar astronauts placed a series of cube reflectors on the Moon as part of an experiment to mea- sure the distance to the Moon with hyperaccuracy. Lasers were fired from an observatory in West Texas toward the Moon; they reflected off these cubes and returned to Earth. The time of arrival was measured by astronomers at the observatory. If the time for the round trip could be measured with an accuracy of 0.1 nanoseconds, what was the uncertainty in the measured distance to the Moon. Given that the semi-major axis of the Moon’s orbit is 3.84 x 108 km, what is the percent accuracy of these measurements?
Calcúlate the uncertainty for momentum p, when the mass of the object is 15.0 (+-) 0.2kg with a velocity of 7.0 (+-) 0.5m/s. What is the uncertainty percentage of the momentum?
The propagation of uncertainty formula for the equation y - ax^2 is y (Ay +(Ay,)²
where Aya = (ax²) – ((a + Sa)x²).and .Ayx = (ax?) - (a(x+ 5x)²) and. The values
%3D
%3D
Sa and 5x are the uncertainties on a and x respectively.
If a = 0.4 +/- 0.8 and x = -1.6+/-0.7 then what is the uncertainty on y?
Chapter 40 Solutions
Fundamentals Of Physics
Ch. 40 - Prob. 1QCh. 40 - Prob. 2QCh. 40 - Prob. 3QCh. 40 - Prob. 4QCh. 40 - Prob. 5QCh. 40 - Prob. 6QCh. 40 - Prob. 7QCh. 40 - Figure 40-22 shows three points at which a spin-up...Ch. 40 - Prob. 9QCh. 40 - Prob. 10Q
Ch. 40 - Prob. 11QCh. 40 - Prob. 12QCh. 40 - Prob. 13QCh. 40 - Prob. 14QCh. 40 - Prob. 1PCh. 40 - Prob. 2PCh. 40 - Prob. 3PCh. 40 - Prob. 4PCh. 40 - Prob. 5PCh. 40 - Prob. 6PCh. 40 - Prob. 7PCh. 40 - Prob. 8PCh. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - SSM What is the acceleration of a silver atom as...Ch. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Assume that in the SternGerlach experiment as...Ch. 40 - Prob. 17PCh. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 22PCh. 40 - Prob. 23PCh. 40 - Prob. 24PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Show that the number of states with the same...Ch. 40 - Prob. 29PCh. 40 - For a helium atom in its ground state, what are...Ch. 40 - Prob. 31PCh. 40 - Prob. 32PCh. 40 - Prob. 33PCh. 40 - Prob. 34PCh. 40 - Prob. 35PCh. 40 - Prob. 36PCh. 40 - Prob. 37PCh. 40 - Prob. 38PCh. 40 - Prob. 39PCh. 40 - Prob. 40PCh. 40 - Prob. 41PCh. 40 - Prob. 42PCh. 40 - Prob. 43PCh. 40 - Prob. 44PCh. 40 - Prob. 45PCh. 40 - Prob. 46PCh. 40 - Prob. 47PCh. 40 - Prob. 48PCh. 40 - Prob. 49PCh. 40 - Prob. 50PCh. 40 - Prob. 51PCh. 40 - Prob. 52PCh. 40 - Prob. 53PCh. 40 - Prob. 54PCh. 40 - Prob. 55PCh. 40 - Prob. 56PCh. 40 - Prob. 57PCh. 40 - Prob. 58PCh. 40 - Prob. 59PCh. 40 - Prob. 60PCh. 40 - Prob. 61PCh. 40 - Prob. 62PCh. 40 - Prob. 63PCh. 40 - Prob. 64PCh. 40 - Prob. 65PCh. 40 - Prob. 66PCh. 40 - Prob. 67PCh. 40 - Prob. 68PCh. 40 - Prob. 69PCh. 40 - Prob. 70PCh. 40 - Prob. 71PCh. 40 - Prob. 72PCh. 40 - Prob. 73PCh. 40 - Prob. 74PCh. 40 - Prob. 75PCh. 40 - Prob. 76PCh. 40 - Prob. 77PCh. 40 - Prob. 78PCh. 40 - Prob. 79P
Knowledge Booster
Similar questions
- show full solutionarrow_forwardQ:-3(a)-An electron moves in the x direction with a speed of 2.8 x 106 m/s. We can measure its speed to a precision of 2 %. With what precision can we simultaneously measure its x coordinate? (b)- Repeat the calculations of the previous example in the case of a pitched baseball (m = 0.135 kg) moving at a speed of (44.5 ms). Again assume that its speed can be measured to a precision of 2%arrow_forward(a) The x-coordinate of an electron is measured with an uncertainty of 0.30 mm. What is the x-component of the electron’s velocity, vx , if the minimum percent uncertainty in a simultaneous measurement of vx is 1.0%? (b) Repeat part (a) for a proton.arrow_forward
- Imagine another universe in which the value of Planck’s con- stant is 0.0663 J s, but in which the physical laws and all other physical constants are the same as in our universe. In this universe, two phys- ics students are playing catch. They are 12 m apart, and one throws a 0.25 kg ball directly toward the other with a speed of 6.0 m/s. (a) What is the uncertainty in the ball’s horizontal momentum, in a direction per- pendicular to that in which it is being thrown, if the student throwing the ball knows that it is located within a cube with volume 125 cm3 at the time she throws it? (b) By what horizontal distance could the ball miss the second students?arrow_forwardIf a proton has an uncertainty in its velocity of 5.90 × 10⁻⁴ m/s, what is the uncertainty (in meters) in its position?arrow_forwardConsider the problem of using laser light to measure the distance from the Earth to the moon. (a) What is the maximum uncertainty in timing the round trip for a light pulse in order to determine the distance with an uncertainty of 1 meter? (b) Estimate the effect of the Earth’s atmosphere on this experiment, using the fact that the speed of light in air (at sea level) is slower than the speed of light in vacuum by a factor of 1.0003. Assume an 8-km-high atmosphere of uniform sea-level density.arrow_forward
- If an electron has an uncertainty in its velocity of 5.60 m/s, what is the uncertainty (in meters) in its position?arrow_forwardFind the uncertainty in kinetic energy. Kinetic energy depends on mass and velocity according to this function E(m,v) = 1/2 m v2. Your measured mass and velocity have the following uncertainties Sm = 0.38 kg and Sv = 0.1 m/s. What is is the uncertainty in energy, SE , if the measured mass, m = 3.1 kg and the measured velocity, v = -7.52 m/s? Units are not needed in your answer.arrow_forwardThe velocity of a proton in an accelerator is known to an accuracy of 0.375% of the speed of light. (This could be small compared with its velocity.) What is the smallest possible uncertainty in its position (in m)?arrow_forward
- Imagine another universe in which the value of Planck’s constant is 0.0663 J . s, but in which the physical laws and all other physical constants are the same as in our universe. In this universe, two physics students are playing catch. They are 12 m apart, and one throws a 0.25 kg ball directly toward the other with a speed of 6.0 m/s. (a) What is the uncertainty in the ball’s horizontal momentum, in a direction perpendicular to that in which it is being thrown, if the student throwing the ball knows that it is located within a cube with volume 125 cm3 at the time she throws it? (b) By what horizontal distance could the ball miss the second student?arrow_forwardPrescriptions for vision correction are given in units called diopters (D). Determine the meaning of that unit. Obtaininformation (perhaps by calling an optometrist or performing an internet search) on the minimum uncertainty with whichcorrections in diopters are determined and the accuracy with which corrective lenses can be produced. Discuss the sources ofuncertainties in both the prescription and accuracy in the manufacture of lenses.arrow_forwardThe velocity of a neutron is measured to be 6.0 x 106 m s-1 with an uncertainty of 1.0 × 103 m s-1. (i) What is the minimum uncertainty of the simultaneous measurement of the position of the neutron? (ii) State how the minimum uncertainties of a measured energy and a measured time are relatedarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning