Fundamentals Of Physics
11th Edition
ISBN: 9781119286240
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 40, Problem 51P
To determine
To calculate:
The ratio of the number of atoms in the 13th excited state of the hypothetical atom to the number in the 11th state.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Quantum Physics
atoms can occupy only certain discrete energy levels. Consider a gas at a temperature of 2 500 K whose atoms can occupy only two energy levels separated by 1.50 eV, where 1 eV (electron volt) is an energy unit equal to 1.60 × 10-19 J. Determine the ratio of the number of atoms in the higher energy level to the number in the lower energy level.
A hypothetical atom has energy levels uniformly separated by 1.2 eV.At a temperature of 2000 K, what is the ratio of the number of atoms in the 13th excited state to the number in the 11th excited state?
Chapter 40 Solutions
Fundamentals Of Physics
Ch. 40 - Prob. 1QCh. 40 - Prob. 2QCh. 40 - Prob. 3QCh. 40 - Prob. 4QCh. 40 - Prob. 5QCh. 40 - Prob. 6QCh. 40 - Prob. 7QCh. 40 - Figure 40-22 shows three points at which a spin-up...Ch. 40 - Prob. 9QCh. 40 - Prob. 10Q
Ch. 40 - Prob. 11QCh. 40 - Prob. 12QCh. 40 - Prob. 13QCh. 40 - Prob. 14QCh. 40 - Prob. 1PCh. 40 - Prob. 2PCh. 40 - Prob. 3PCh. 40 - Prob. 4PCh. 40 - Prob. 5PCh. 40 - Prob. 6PCh. 40 - Prob. 7PCh. 40 - Prob. 8PCh. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - SSM What is the acceleration of a silver atom as...Ch. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Assume that in the SternGerlach experiment as...Ch. 40 - Prob. 17PCh. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 22PCh. 40 - Prob. 23PCh. 40 - Prob. 24PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Show that the number of states with the same...Ch. 40 - Prob. 29PCh. 40 - For a helium atom in its ground state, what are...Ch. 40 - Prob. 31PCh. 40 - Prob. 32PCh. 40 - Prob. 33PCh. 40 - Prob. 34PCh. 40 - Prob. 35PCh. 40 - Prob. 36PCh. 40 - Prob. 37PCh. 40 - Prob. 38PCh. 40 - Prob. 39PCh. 40 - Prob. 40PCh. 40 - Prob. 41PCh. 40 - Prob. 42PCh. 40 - Prob. 43PCh. 40 - Prob. 44PCh. 40 - Prob. 45PCh. 40 - Prob. 46PCh. 40 - Prob. 47PCh. 40 - Prob. 48PCh. 40 - Prob. 49PCh. 40 - Prob. 50PCh. 40 - Prob. 51PCh. 40 - Prob. 52PCh. 40 - Prob. 53PCh. 40 - Prob. 54PCh. 40 - Prob. 55PCh. 40 - Prob. 56PCh. 40 - Prob. 57PCh. 40 - Prob. 58PCh. 40 - Prob. 59PCh. 40 - Prob. 60PCh. 40 - Prob. 61PCh. 40 - Prob. 62PCh. 40 - Prob. 63PCh. 40 - Prob. 64PCh. 40 - Prob. 65PCh. 40 - Prob. 66PCh. 40 - Prob. 67PCh. 40 - Prob. 68PCh. 40 - Prob. 69PCh. 40 - Prob. 70PCh. 40 - Prob. 71PCh. 40 - Prob. 72PCh. 40 - Prob. 73PCh. 40 - Prob. 74PCh. 40 - Prob. 75PCh. 40 - Prob. 76PCh. 40 - Prob. 77PCh. 40 - Prob. 78PCh. 40 - Prob. 79P
Knowledge Booster
Similar questions
- 9. An atom in a solid has two energy levels: a ground state of degeneracy gi and an excited state of degeneracy g2 with an energy A above the ground state. (a) Show that the partition function for the atom, Zatom; is Zatom = 91 + »e¬ßA (b) Show that the heat capacity of the atom is given by 9192A²e¬BA kgT² (g1 + g2e-BA)² (c) Show that a monatomic gas of these atoms has a partition function of Z = ZatomZN Where only translational motion of the gaseous atoms is considered so that N V ZN =arrow_forwardThe total probability of finding an electron in the hydrogen atom is related to the integral ∫ r2 e-2r/ao dr Where r is the distance of the electron from the nucleus and ao is the Bohr radius. Evaluate thisintegral.arrow_forwardWhat is the average radius of the orbit of an electron in the n=2 energy level of an oxygen atom (Z=8)? Express your answer in pico-meters.arrow_forward
- The energy levels of the Bohr model for the atom can be expressed mathematically as En -13.6 eV, where Z is the atomic number, and n is the quantum number. This model is reasonably accurate for hydrogen and for singly ionized helium. The photon associated with the transition of an electron from the ground state to the first excited state in singly ionized helium has a different wavelength than that associated with a similar transition in hydrogen. Which of the following correctly describes the wavelengths of these two photons in terms of the energy level diagrams for hydrogen and helium? The photon absorbed by hydrogen has a longer wavelength than that absorbed by helium, because the energy levels in the diagram for hydrogen are more closely spaced than in the diagram for helium. B The photon absorbed by hydrogen has a shorter wavelength than that absorbed by helium, because the energy levels in the diagram for hydrogen are more closely spaced than in the diagram for helium. The photon…arrow_forwardQ4. Calculate the values of electron and hole concentrations in cm³ at 300 K for intrinsic Ge, Si and GaAs, given: Quantity me/mo m/mo Eg (eV) mo e kB h Ge 0.55 0.31 0.66 9.1×10-³1 kg 1.6×10-¹9 C 1.38×10-23 J/K 1.054×10-34 Js Si 1.10 0.56 1.12 Ge 0.068 0.500 1.43arrow_forwardA hypothetical atom has two energy levels, with a transition wavelength between them of 580 nm. In a particular sample at 300 K, 4.0 * 10^20 such atoms are in the state of lower energy. (a) How many atoms are in the upper state, assuming conditions of thermal equilibrium? (b) Suppose, instead, that 3.0*10^20 of these atoms are “pumped” into the upper state by an external process, with 1.0 * 10^20 atoms remaining in the lower state. What is the maxi-mum energy that could be released by the atoms in a single laser pulse if each atom jumps once between those two states (either via absorption or via stimulated emission)?arrow_forward
- The wavelength of the emitted photon from the hydrogen molecule H2 is 2.30 μm (micrometers) when the vibrational quantum number decreases by one. What is the effective "spring constant" for the H2 molecule in N/m ?What is the "zero point" energy (in eV) of the molecular vibration?arrow_forwardConsider 1.50 mols of a substance in thermal equilibrium at a temperature of 87.0 °C whose atoms can occupy only two energy levels separated by 5.00x102 eV, where 1 eV (electron volt) is an energy unit equal to 1.60x10 19 J. kB = 1.38x10 23 J/K , %3D NA 6.02x1023 mol1 Eg a) Find the probability of occupation of the ground state with energy E1 and the 1st excited state with energy E2? b) How many atoms in the substance (on average) are in 5.00x10 eV the ground state and in the 1st excited state? Earrow_forwardCompute the intrinsic line-width (Δλ) of the Lyman α line (corresponding to the n=2 to n=1) transition for the Hydrogen atom. You may assume that the electron remains in the excited state for a time of the order of 10^−8s. The line-width may be computed using:ΔE=(hc/λ^2)Δλarrow_forward
- A nanoparticle containing 6 atoms can be modeled approximately as an Einstein solid of 18 independent oscillators. The evenly spaced energy levels of each oscillator are 5e-21 J apart. Use k = 1.4e-23 J/K. When the nanoparticle's energy is in the range 5(5e-21) J to 9(5e-21) J, what is the approximate heat capacity per atom?arrow_forwardwhere ?∞ = 1.097 × 10^7 m−1is the Rydberg constant and ? is the atomic number (thenumber of protons found in the nucleus). Calculate the ground state energy of a triplyionised beryllium atom, Be3+ (a beryllium atom with three electrons removed).arrow_forwardThe laboratory operation of a Laser is related to the atomic transition problem. Let E - E, = ho for two atomic states, u(@) be the radiation density, N be the number of atoms in state 1, and N2 that in state 2. B12 is the Enstein coffeicent for absorption, B21 that transition probability for emission, and A the spontaneous emission coefficient. Find N2/N1 O B12/[A+ B21] O B1zu(@)/[A + B21u(@)] O B1zu(@)/A O B1zu(@)/B21 O Au(@)/B12 Questio Not yet answered Marked out of P Flag question Forbidden transitions and selection rules suggest that O a photon has energy O a photon has mass O a photon has linear momentum O a photon has angular momentum a photon has parityarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning