Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 40, Problem 50P
To determine
To calculate:
the temperature of the star where the hypothetical atoms are present in an excited state.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A hypothetical atom has only two atomic energy levels, separated by 3.2 eV. Suppose that at a certain altitude in the atmosphere of a star there are 6.1 * 1013/cm3 of these atoms in the higher-energy state and 2.5 * 1015/cm3 in the lower-energy state. What is the temperature of the star’s atmosphere at that altitude?
Hydrogen atoms in the atmosphere of the sun can exist in different energy states. The difference between the lowest energy state (the ground state) and the second to lowest energy state (the first excited state) is about 2.5 eV. The temperature of the sun’s atmosphere is about 5800 K (so kBT = 0.5 eV). What will be the ratio of the number of atoms in the first excited state divided by the number of atoms in the ground state?
Quantum Physics
Chapter 40 Solutions
Fundamentals of Physics Extended
Ch. 40 - Prob. 1QCh. 40 - Prob. 2QCh. 40 - Prob. 3QCh. 40 - Prob. 4QCh. 40 - Prob. 5QCh. 40 - Prob. 6QCh. 40 - Prob. 7QCh. 40 - Figure 40-22 shows three points at which a spin-up...Ch. 40 - Prob. 9QCh. 40 - Prob. 10Q
Ch. 40 - Prob. 11QCh. 40 - Prob. 12QCh. 40 - Prob. 13QCh. 40 - Prob. 14QCh. 40 - Prob. 1PCh. 40 - Prob. 2PCh. 40 - Prob. 3PCh. 40 - Prob. 4PCh. 40 - Prob. 5PCh. 40 - Prob. 6PCh. 40 - Prob. 7PCh. 40 - Prob. 8PCh. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - SSM What is the acceleration of a silver atom as...Ch. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Assume that in the SternGerlach experiment as...Ch. 40 - Prob. 17PCh. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 22PCh. 40 - Prob. 23PCh. 40 - Prob. 24PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Show that the number of states with the same...Ch. 40 - Prob. 29PCh. 40 - For a helium atom in its ground state, what are...Ch. 40 - Prob. 31PCh. 40 - Prob. 32PCh. 40 - Prob. 33PCh. 40 - Prob. 34PCh. 40 - Prob. 35PCh. 40 - Prob. 36PCh. 40 - Prob. 37PCh. 40 - Prob. 38PCh. 40 - Prob. 39PCh. 40 - Prob. 40PCh. 40 - Prob. 41PCh. 40 - Prob. 42PCh. 40 - Prob. 43PCh. 40 - Prob. 44PCh. 40 - Prob. 45PCh. 40 - Prob. 46PCh. 40 - Prob. 47PCh. 40 - Prob. 48PCh. 40 - Prob. 49PCh. 40 - Prob. 50PCh. 40 - Prob. 51PCh. 40 - Prob. 52PCh. 40 - Prob. 53PCh. 40 - Prob. 54PCh. 40 - Prob. 55PCh. 40 - Prob. 56PCh. 40 - Prob. 57PCh. 40 - Prob. 58PCh. 40 - Prob. 59PCh. 40 - Prob. 60PCh. 40 - Prob. 61PCh. 40 - Prob. 62PCh. 40 - Prob. 63PCh. 40 - Prob. 64PCh. 40 - Prob. 65PCh. 40 - Prob. 66PCh. 40 - Prob. 67PCh. 40 - Prob. 68PCh. 40 - Prob. 69PCh. 40 - Prob. 70PCh. 40 - Prob. 71PCh. 40 - Prob. 72PCh. 40 - Prob. 73PCh. 40 - Prob. 74PCh. 40 - Prob. 75PCh. 40 - Prob. 76PCh. 40 - Prob. 77PCh. 40 - Prob. 78PCh. 40 - Prob. 79P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Determine the number of energy states per cubic cm in GaAs between Ec and Ec + 0.65 eV at T = 300K. The effective mass of an electron in germanium is 0.067 times its normal mass. N = 4.121 X 1019 states/cm³ N = 3.296 X 1019 states/cm³ N = 2.141 X 1019 states/cm³ ON = 1.924 X 101⁹ states/cm³arrow_forwardO The electron transitions to the n 2 state. O The electron transitions to the n = 5 state. O The electron is captured by the nucleus. A hypothetical atom has three energy levels: the ground-state level and levels 1.25 eV and 2.75 eV above the ground state. When this atom is in the ground state, what wavelengths of light may it absorb? Let Planck's constant h = 4.136 x 10 eV s, and the speed of light c= 3.00 x 10° m/s. O451 nm and 993 nm O 451 nm, 827 nm, and 993 nm O 827 nm and 993 nm O451 nm and 827 nmarrow_forwardThe figure shows a model of the energy levels of an atom. The atom is initially in state W, which is the ground state for the atom. After a short amount of time, the atom then transitions to state X. The atom then transitions to state Y before transitioning to state Z. The atom then transitions back to state W. Which of the following descriptions is correct about the atom as it transitions from state W to each subsequent state until it finally returns to its original state?arrow_forward
- The work function of a certain metal is 226.7 kJ / mol. How fast must an He atom (4 amu) collide with the metal to be able to pull an electron from the surface and travel at 1000 m / s? Select one: 8.2619 x 1015m / s None of the above 10647 m / s 337 m / sarrow_forwardQ4. Calculate the values of electron and hole concentrations in cm³ at 300 K for intrinsic Ge, Si and GaAs, given: Quantity me/mo m/mo Eg (eV) mo e kB h Ge 0.55 0.31 0.66 9.1×10-³1 kg 1.6×10-¹9 C 1.38×10-23 J/K 1.054×10-34 Js Si 1.10 0.56 1.12 Ge 0.068 0.500 1.43arrow_forwardThe two nuclei in the carbon monoxide (CO) molecules are 0.1128 nm apart. The mass of the carbon atom is 1.993x10-26 kg. The mass of the oxygen atom is 2.656x10-26 kg. Spectroscopic measurements show that adjacent vibrational energy levels for the CO molecule are 0.269 eV. What is the effective spring constant of the CO molecule? (Give your answer in N/m.)arrow_forward
- A photon with a wavelength of 410 nm has energy Ephoton = 3.0 eV. Do you expect to see a spectral line with λ = 410 nm in the emission spectrum of the atom represented by this energy-level diagram? If so, what transition or transitions will emit it? Do you expect to see a spectral line with λ = 410 nm in the absorption spectrum? If so, what transition or transitions will absorb it?arrow_forwarda. The electron of a hydrogen atom is excited into a higher energy level from a lower energy level. A short time later the electron relaxes down to the no = 1 energy level, releasing a photon with a wavelength of 93.83 nm. Compute the quantum number of the energy level the electron relaxes from, nhi. Note: the Rydberg constant in units of wavenumbers is 109,625 cm-1 nhi =16 b. What would the wavenumber, wavelength and energy of the photon be if instead no = 1 and nhi = 4? V: 6.9121e14 x (cm-¹) λ: (nm) E: 45.8e-20 ✓ (1)arrow_forwardA hydrogen atom has its electron in the n-3 state. How much energy would have to be absorbed by the atom for it to become ionized from this level? What is the frequency of the photon that could produce this result? An atom has 46 electrons. What is the smallest value of n needed so that all 46 electrons occupy the lowest possible quantum states consistent with the Pauli exclusion principle? O 1.51 eV 3.65 x 10^14 Hz, n = 5 O 1.51 eV 3.93 x 10^14 Hz. n=5 O 1.58 eV 3.93 x 10^14 Hz, n=5 1.51 eV 3.65 x 10^14 Hz. n-4 O 144 eV 3.65 x 10^14 Hz, n=6arrow_forward
- An atom has three energy states: -15 eV, -12 eV and -6 eV. If a beam of photons with photons of energy 8 eV is directed at these atoms, which of the following will happen? Some photons will be absorbed and electrons will transition from -15 eV state to -6 eV state. Some electrons will transition from -15 eV to -12 eV reducing the energy of some photons. Some electrons will transition from -12 eV to -6 eV reducing the energy of some photons by one-third. No photon absorption will take place and the number of electrons in each level will stay unchanged.arrow_forwardThe first five energy levels of the hydrogen atom are at −13.6 eV, −3.4 eV,−1.51 eV, −0.85 eV, and −0.54 eV. The emission spectrum of a hydrogen plasma lamp is a set of bright lines corresponding to all the possible transitions between these five levels.Sketch the far ultraviolet part of the spectrum you would expect from 80 nm wavelength to 130 nm. You should provide an x-axis with tickmarks and labels in nm, and label each brightline with its wavelength. Show your calculations of the wavelengths.arrow_forwardThe first five energy levels of the hydrogen atom are at −13.6 eV, −3.4 eV,−1.51 eV, −0.85 eV, and -0.54 eV. The absorption spectrum of a hydrogen plasma is acontinuous spectrum with dark lines corresponding to all the possible transitions betweenthese five levels. Sketch the spectrum you would expect to see at wavelengths from 400 nmto 700 nm. You do not need to use colour in your sketch, but you should provide an x-axiswith tickmarks and labels in nm, label the approximate red, green and blue regions, andlabel each dark line with its wavelength. Show your calculations of the wavelengths. (Hint:you should show three dark lines.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning