Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 40, Problem 36P
To determine
To calculate:
(a) the value of λmin for x-rays generated by the molybdenum target when the accelerating potential is increase to 50 keV.
(b) if the wavelength of the Kα and Kβ line of increase, decrease or remain the same when the accelerating potential is increase to 50 keV.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In the figure, thex rays shown are produced when 35.0 keV electrons strike a molybdenum target. If the accelerating potential is
maintained at this value but a different target is used instead, what values of (a) Amin (b) the wavelength of the K, line and (c) the
wavelength of the Kg line result? The K, L, and M x-ray levels for the new target are 22.74, 4.68, and 0.82 keV.
Kg
Continuous
spectrum Ks
Amin
30
40
50
60
70
80
90
Wavelength (pm)
(a) Number
i
Units
(b) Number
i
Units
(c) Number
i
Units
Relative intensity
Light of wavelength 203 nm shines on a metal surface. 3.98 eV is required to eject an electron. What is the kinetic energy of (a) the
fastest and (b) the slowest ejected electrons? (c) What is the stopping potential for this situation? (d) What is the cutoff wavelength for
this metal?
(a) Number
i
Units
(b) Number
i
Units
(c) Number
i
Units
(d) Number
i
Units
Chapter 38, Problem 019
(a) If the work function for a certain metal is 1.9 ev, what is the stopping potential for electrons ejected from the metal
when light of wavelength 504 nm shines on the metal? (b) What is the maximum speed of the ejected electrons?
(a) Number
Units
(b) Number
Units
Chapter 40 Solutions
Fundamentals of Physics Extended
Ch. 40 - Prob. 1QCh. 40 - Prob. 2QCh. 40 - Prob. 3QCh. 40 - Prob. 4QCh. 40 - Prob. 5QCh. 40 - Prob. 6QCh. 40 - Prob. 7QCh. 40 - Figure 40-22 shows three points at which a spin-up...Ch. 40 - Prob. 9QCh. 40 - Prob. 10Q
Ch. 40 - Prob. 11QCh. 40 - Prob. 12QCh. 40 - Prob. 13QCh. 40 - Prob. 14QCh. 40 - Prob. 1PCh. 40 - Prob. 2PCh. 40 - Prob. 3PCh. 40 - Prob. 4PCh. 40 - Prob. 5PCh. 40 - Prob. 6PCh. 40 - Prob. 7PCh. 40 - Prob. 8PCh. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - SSM What is the acceleration of a silver atom as...Ch. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Assume that in the SternGerlach experiment as...Ch. 40 - Prob. 17PCh. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 22PCh. 40 - Prob. 23PCh. 40 - Prob. 24PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Show that the number of states with the same...Ch. 40 - Prob. 29PCh. 40 - For a helium atom in its ground state, what are...Ch. 40 - Prob. 31PCh. 40 - Prob. 32PCh. 40 - Prob. 33PCh. 40 - Prob. 34PCh. 40 - Prob. 35PCh. 40 - Prob. 36PCh. 40 - Prob. 37PCh. 40 - Prob. 38PCh. 40 - Prob. 39PCh. 40 - Prob. 40PCh. 40 - Prob. 41PCh. 40 - Prob. 42PCh. 40 - Prob. 43PCh. 40 - Prob. 44PCh. 40 - Prob. 45PCh. 40 - Prob. 46PCh. 40 - Prob. 47PCh. 40 - Prob. 48PCh. 40 - Prob. 49PCh. 40 - Prob. 50PCh. 40 - Prob. 51PCh. 40 - Prob. 52PCh. 40 - Prob. 53PCh. 40 - Prob. 54PCh. 40 - Prob. 55PCh. 40 - Prob. 56PCh. 40 - Prob. 57PCh. 40 - Prob. 58PCh. 40 - Prob. 59PCh. 40 - Prob. 60PCh. 40 - Prob. 61PCh. 40 - Prob. 62PCh. 40 - Prob. 63PCh. 40 - Prob. 64PCh. 40 - Prob. 65PCh. 40 - Prob. 66PCh. 40 - Prob. 67PCh. 40 - Prob. 68PCh. 40 - Prob. 69PCh. 40 - Prob. 70PCh. 40 - Prob. 71PCh. 40 - Prob. 72PCh. 40 - Prob. 73PCh. 40 - Prob. 74PCh. 40 - Prob. 75PCh. 40 - Prob. 76PCh. 40 - Prob. 77PCh. 40 - Prob. 78PCh. 40 - Prob. 79P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The work function for potassium is 2.26 eV. What is the cutoff frequency when this metal is used as photoelectrode? What is the stopping potential when for the emitted electrons when this photo electrode is exposed to radiation of frequency 1200 THz?arrow_forwardX-ray is produced by bombarding a tungsten target with high energy electrons accelerated by 8.8 kV of voltage. Use σ = 1 for the electron transition down to K shell (n = 1) and σ = 7.4 for the electron transition down to L shell (n = 2) for characteristic X-ray. What is the kinetic energy of electrons accelerated by 8.8 kV of high voltage? Assume that the initial speed of electrons emitted from a filament by thermionic emission is zero. What is the minimum wavelength of electromagnetic waves produced by bremsstrahlung?arrow_forwardThe x-ray spectrum is for 35.0 keV electrons striking a molybdenum (Z= 42) target. If you substitute a silver (Z = 47) target for the molybdenum target, will (a) lmin, (b) the wavelength for the Ka line, and (c) the wavelength for the Kb line increase, decrease, or remain unchanged?arrow_forward
- Using the average speed of a gas, (8?????)1/2, determine the average de Broglie wavelength for an He atom at 25 °C and at 500 °C.How fast would the He atom need to travel in order to have the same linear momentum as a 500 nm photon?arrow_forwardWhen ultraviolet light with a wavelength of 400.0 nm falls on a certain metalsurface,the maximum kinetic energy of the emitted electrons is measured to be1.10 eV.What is the maximum kinetic energy of the electrons in Joules when lightof wavelength 300.0 nm falls on the surface?arrow_forwardIn x-ray production, electrons are accelerated through a high voltage and then decelerated by striking a target. (a) To make possible the production of x-rays of wavelength λ, what is the minimum potential difference ΔV through which the electrons must be accelerated? (b) State in words how the required potential difference depends on the wavelength. (c) Explain whether your result predicts the correct minimum wavelength as shown. (d) Does the relationship from part (a) apply to other kinds of electromagnetic radiation besides x-rays? (e) What does the potential difference approach as λ goes to zero? (f) What does the potential difference approach as λ increases without limit?arrow_forward
- | 1+ 19. An electron (mass m) with initial velocity i = voi + voj is in an electric field É = -E,k. If 1o is initial de-Broglie wavelength of electron, its de-Broglie wavelength at time t is given by do a. A = 1+ m2 t? b. A= 1+ t2 m²u λο c. A = 1+ t2 2m² v do d. A = 2+arrow_forwardAccording to this question, what is the threshold frequency and what is the kinetic energy of the ejected electron?arrow_forward(a) A hydrogen atom has its electron in the n = 6 level. The radius of the electron's orbit in the Bohr model is 1.905 nm. Find the de Broglie wavelength of the electron under these circumstances. m (b) What is the momentum, mv, of the electron in its orbit? kg-m/sarrow_forward
- The spacing between atomic planes in a crystal is 0.110 nm. If 12.0 keV x rays are diffracted by this crystal, what are the angles of (a) first-order and (b) second-order diffraction?arrow_forwardIn an electron microscope, the nonrelativistic electron beam is formed by a setup similar to the electron gun used in the Davisson– Germer experiment. The electrons have negligible kinetic energy before they are accelerated. What accelerating voltage is needed to produce electrons with wavelength 10 pm = 0.010 nm (roughly 50,000 times smaller than typical visible-light wavelengths)?arrow_forwardFor x rays with wavelength 0.0300 nm, the m = 1 intensitymaximum for a crystal occurs when the angle u is35.8. At what angle u does the m = 1 maximum occur when a beam of4.50 keV electrons is used instead? Assume that the electrons also scatterfrom the atoms in the surface plane of this same crystal.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill