Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 80PQ
(a)
To determine
Draw the graph for the path of the particle and show that its helix.
(b)
To determine
Find the value of
(c)
To determine
Describe the z component of
(d)
To determine
Can the given position, velocity and acceleration describes the charged particles in helical path.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
in landing rocket experiment . my doctor want me to write a 5 lines about what I have learned from this screenshot.
explain each graph
Older televisions display a picture using a device called a cathode ray tube, where electrons are emitted at high speed and collide with a
phosphorescent surface, causing light to be emitted. The paths of the electrons are altered by magnetic fields. Consider one such electron that
is emitted with an initial velocity of 1.85 x 107 m/s in the horizontal direction when magnetic forces deflect the electron with a vertically upward
acceleration of 5.35 x 1015 m/s². The phosphorescent screen is a horizontal distance of 5.6 cm away from the point where the electron is
emitted.
(a) How much time does the electron take to travel from the emission point to the screen?
S
(b) How far does the electron travel vertically before it hits the screen?
cm
A robotic vehicle, or rover, is exploring the surface of Mars. The stationary Mars lander is the origin of coordinates, and the sur-rounding Martian surface lies in the xy-plane. The rover, which we x = 2.0 m - 10.25 m > s22t2represent as a point, has x- and y-coordinates that vary with time:y = 11.0 m > s2t + 10.025 m > s32t3(a) Find the rover’s coordinates and distance from the lander at t = 2.0 s. (b) Find the rover’s displacement and average velocity vectors for the interval t = 0.0 s to t = 2.0 s. (c) Find a general S. Express expression for the rover’s instantaneous velocity vector vS at t = 2.0 s in component form and in terms of magnitude and vdirection.
d) Find the instantaneous acceleration at t = 2.0 s.
e) a1 , t=1sec
a0 , t=0sec
Chapter 4 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 4.1 - CASE STUDY How Many Dimensions? In each case,...Ch. 4.2 - Based on the particles motion diagram in Figure...Ch. 4.3 - Prob. 4.3CECh. 4.5 - Prob. 4.4CECh. 4.5 - Prob. 4.5CECh. 4.6 - A particle travels at a uniform linear speed...Ch. 4.8 - Prob. 4.7CECh. 4 - Prob. 1PQCh. 4 - In each case, determine whether the object is...Ch. 4 - CASE STUDY Imagine an indoor tennis court on a...
Ch. 4 - A basketball player dribbles the ball while...Ch. 4 - A motion diagram of a bouncing ball is shown in...Ch. 4 - Prob. 6PQCh. 4 - Prob. 7PQCh. 4 - Figure P4.8 shows the motion diagram of two balls,...Ch. 4 - Prob. 9PQCh. 4 - Prob. 10PQCh. 4 - Prob. 11PQCh. 4 - If a particles speed is always increasing, what...Ch. 4 - Prob. 13PQCh. 4 - An aircraft flies at constant altitude (with...Ch. 4 - A glider is initially moving at a constant height...Ch. 4 - If the vector components of the position of a...Ch. 4 - A If the vector components of a particles position...Ch. 4 - Prob. 18PQCh. 4 - A The spiral is an example of a mathematical form...Ch. 4 - A circus performer stands on a platform and throws...Ch. 4 - Anthony carelessly rolls his toy car off a...Ch. 4 - A physics student stands on a second-story balcony...Ch. 4 - During the battle of Bunker Hill, Colonel William...Ch. 4 - A During the battle of Bunker Hill, Colonel...Ch. 4 - A softball is hit with an initial velocity of 29.0...Ch. 4 - Figure P4.8 shows the motion diagram of two balls....Ch. 4 - A circus performer throws an apple toward a hoop...Ch. 4 - An arrow is fired with initial velocity v0 at an...Ch. 4 - A rock is thrown horizontally off a 56.0-m-high...Ch. 4 - A projectile is launched up and to the right over...Ch. 4 - Sienna tosses a ball from the window of her...Ch. 4 - Some cats can be trained to jump from one location...Ch. 4 - Dock diving is a great form of athletic...Ch. 4 - A graduate student discovers that the only...Ch. 4 - The bola is a traditional weapon used for tripping...Ch. 4 - In three different driving tests, a car moves with...Ch. 4 - A child swings a tennis ball attached to a 0.750-m...Ch. 4 - A Two particles A and B move at a constant speed...Ch. 4 - Prob. 39PQCh. 4 - Prob. 40PQCh. 4 - Prob. 41PQCh. 4 - A pendulum constructed with a bowling ball at the...Ch. 4 - Prob. 43PQCh. 4 - Prob. 44PQCh. 4 - Pete and Sue, two reckless teenage drivers, are...Ch. 4 - Prob. 46PQCh. 4 - Prob. 47PQCh. 4 - A brother and sister, Alan and Beth, have just...Ch. 4 - A man paddles a canoe in a long, straight section...Ch. 4 - Prob. 50PQCh. 4 - Prob. 51PQCh. 4 - Prob. 52PQCh. 4 - Suppose at one point along the Nile River a...Ch. 4 - Prob. 54PQCh. 4 - Prob. 55PQCh. 4 - Prob. 56PQCh. 4 - Prob. 57PQCh. 4 - Two bicyclists in a sprint race begin from rest...Ch. 4 - A particle has a nonzero acceleration and a...Ch. 4 - A golfer hits his approach shot at an angle of...Ch. 4 - You are watching a friend practice archery when he...Ch. 4 - Prob. 62PQCh. 4 - Prob. 63PQCh. 4 - David Beckham has lined up for one of his famous...Ch. 4 - Prob. 65PQCh. 4 - Prob. 66PQCh. 4 - Prob. 67PQCh. 4 - Frequently, a weapon must be fired at a target...Ch. 4 - Prob. 69PQCh. 4 - Prob. 70PQCh. 4 - Prob. 71PQCh. 4 - An observer sitting on a park bench watches a...Ch. 4 - Prob. 73PQCh. 4 - Prob. 74PQCh. 4 - Prob. 75PQCh. 4 - Prob. 76PQCh. 4 - Prob. 77PQCh. 4 - Prob. 78PQCh. 4 - A circus cat has been trained to leap off a...Ch. 4 - Prob. 80PQCh. 4 - An experimentalist in a laboratory finds that a...Ch. 4 - Prob. 82PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You go watch your friend as she runs at a cross country meet. The first time she passes you, your friend runs by going due north at a speed of 4.40 m/s. You move to a different place on the course and twelve minutes after you saw her the first time, your friend runs past you again. This time she is traveling at a speed of 3.80 m/s in the direction 30.0° W of S. What is the direction of her average acceleration between those same two times?arrow_forwardThe equation r(t) = ( sin t)i + ( cos t)j + (t) k is the position of a particle in space at time t. Find the particle's velocity and acceleration vectors. π Then write the particle's velocity at t= as a product of its speed and direction. The velocity vector is v(t) = (i+j+ k.arrow_forwardMr. M is walking to Mr. T’s house. He take the shortcut across an open field. His first displacement is 140 m[E35N]. He then walks 200.0m[E]. What is Mr. M’s total displacement?arrow_forward
- A pirate has buried his treasure on an island with five trees located at the points (30.0 m, 20.0 m), (60.0 m, 80.0 m), (10.0 m, 10.0 m), (40.0 m, 30.0 m), and (70.0 m, 60.0 m), all measured relative to some origin, as shown in Figure P1.69. His ships log instructs you to start at tree A and move toward tree B, but to cover only one-half the distance between A and B. Then move toward tree C, covering one-third the distance between your current location and C. Next move toward tree D, covering one-fourth the distance between where you are and D. Finally move toward tree E, covering one-fifth the distance between you and E, stop, and dig. (a) Assume you have correctly determined the order in which the pirate labeled the trees as A, B, C, D, and E as shown in the figure. What are the coordinates of the point where his treasure is buried? (b) What If? What if you do not really know the way the pirate labeled the trees? What would happen to the answer if you rearranged the order of the trees, for instance, to B (30 m, 20 m), A (60 m, 80 m), E (10 m, 10 m), C (40 m, 30 m), and D (70 m, 60 m)? State reasoning to show that the answer does not depend on the order in which the trees are labeled. Figure 1.69arrow_forwardAn experimentalist in a laboratory finds that a particle has a helical path. The position of this particle in the laboratory frame is given by r(t)=Rcost+Rsint+vztk where R, vz, and are constants. A moving frame has velocity (vM)L=vzk relative to the laboratory frame. a. What is the path of the particle in the moving frame? b. What is the velocity of the particle as a function of time relative to the moving frame? c. What is the acceleration of the particle in each frame? d. How should the acceleration in each frame be related? Does your answer to part (c) make sense? Explain.arrow_forwardOften, we model the Moon as a particle in a circular orbit around the Earth. The same side of the Moon always faces the Earth. Sketch the Moon in its orbit. Explain in what way the particle model is insufficient.arrow_forward
- An electric skateboarder is travelling west on a path along the river at 5m/s. A brisk walker on the other side of the riverbank is walking east along a path at 3m/s. The two paths are 40m apart. The skateboarder is initially 600m east of the walker. After 60 seconds, how fast is the distance between the skateboarder and the walker changing?arrow_forwardYou encounter a moving walkway that is 81 m long and has a speed of 2.1 m/s relative to the ground. How long would it take you to cover the 81 m length of the walkway if, once you get on the walkway, you immediately turn around and start walking in the opposite direction with a speed of 1.6 m/s relative to the walkway? Express your answer using one significant figure.arrow_forwardThe equation r(t) = (3t + 5) i+ (4t - 5) j+(4t) k is the position of a particle in space at time t. Find the particle's velocity and acceleration vectors. Then write the particle's velocity at t=0 as a product of its speed and direction. What is the velocity vector? v(t) = (O i+ ( j+ (O karrow_forward
- You are the captain of the John Paul Jones, Class-A Battleship on your way to kill the alien ship on the North side of Oahu, Hawaii. Your ship travels 10.36km [W650S] and then 5.60 km [S450W] to meet up with the alien ship. Determine your ship’s total displacement.arrow_forwardSuppose we are told that the acceleration a of a particle moving with uniform speed ν in a circle of radius r is proportional to some power of r, say rn, and some power of ν, say νm. Determine the values of n and m and write the simplest form of an equation for the acceleration.arrow_forwardYou are operating a radio-controlled model car on a vacant tennis court. Your position is the origin oc coordinates, and the surface of the court lies in the xy-plane. The car, which we represent as a point, has x and y-coordinates that vary with time according to x = 2.0 m – (0.25 m/s2)t2 y = (1.0 m/s)t + (0.025 m/s3)t3 1. Find the car’s coordinate’s and distance from you at time t = 2.0 s. A) (1.0m, 2.2 m) r = 2.4 m B) (2.2m, 1.5m) r = 2.7m C) (2.5m, 2.05m) r = 3.2 m D) (2.3m, 1.0m) r = 2.5m 2. The components of the car’s instantaneous velocity are the time derivatives of the coordinates: vx = dx/dt = (-0.25 m/s2)(2t), vy = dy/dt = 1.0 m/s + (0.025 m/s3)(3t2) This can be expressed as velocity vector v = vxî + vyĵ = (-0.5 m/s2)tî + [1.0 m/s + (0.075 m/s3)t2]ĵ 3. What are the components of instantaneous velocity and its…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY