Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 74PQ
To determine
Explain the motion of the Mars with its velocity.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Buzz Lightyear is standing on top of a building on the planet Zook. He wishes to determine the height of the building, so he drops a stone off the
building and it falls for 2 seconds. Buzz knows that gravitational acceleration on Zook is 5 (m/s)/s.
a) EXPLAIN how you would use the How fast method to determine the speed of the stone when it reaches the ground as well as the average speed of
the stone during this time. Give the speed and average speed of the stone.
b) EXPLAIN how you would use the How-far method to determine height of the building. Give the height of the building.
Maximum number of characters (including HTML tags added by text editor): 32,000
Taxr Ediser(aad characrer count)
In the Soapbox Derby, young participants build nonmotorized cars with very lowfriction wheels. Cars race by rolling down a hill. The track at Akron’s Derby Downs, where the national championship is held, begins with a 55-ft-long section tilted 13° below horizontal.a. What is the maximum possible acceleration of a car moving down this stretch of track?b. If a car starts from rest and undergoes this acceleration for the full 55 ft, what is its final speed in m/s?
P5 The gravitational attraction on Moon 1 of Jupiter is 10/sec². An object is
launched 45 ft above the surface of Moon 1 with a velocity of 40%/sec upward.
a. Find the equation of motion of this object.
b. Find the maximum height above the surface of Moon 1 reached by this
object.
c. Find the time for this object to reach the surface of Moon 1.
Chapter 4 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 4.1 - CASE STUDY How Many Dimensions? In each case,...Ch. 4.2 - Based on the particles motion diagram in Figure...Ch. 4.3 - Prob. 4.3CECh. 4.5 - Prob. 4.4CECh. 4.5 - Prob. 4.5CECh. 4.6 - A particle travels at a uniform linear speed...Ch. 4.8 - Prob. 4.7CECh. 4 - Prob. 1PQCh. 4 - In each case, determine whether the object is...Ch. 4 - CASE STUDY Imagine an indoor tennis court on a...
Ch. 4 - A basketball player dribbles the ball while...Ch. 4 - A motion diagram of a bouncing ball is shown in...Ch. 4 - Prob. 6PQCh. 4 - Prob. 7PQCh. 4 - Figure P4.8 shows the motion diagram of two balls,...Ch. 4 - Prob. 9PQCh. 4 - Prob. 10PQCh. 4 - Prob. 11PQCh. 4 - If a particles speed is always increasing, what...Ch. 4 - Prob. 13PQCh. 4 - An aircraft flies at constant altitude (with...Ch. 4 - A glider is initially moving at a constant height...Ch. 4 - If the vector components of the position of a...Ch. 4 - A If the vector components of a particles position...Ch. 4 - Prob. 18PQCh. 4 - A The spiral is an example of a mathematical form...Ch. 4 - A circus performer stands on a platform and throws...Ch. 4 - Anthony carelessly rolls his toy car off a...Ch. 4 - A physics student stands on a second-story balcony...Ch. 4 - During the battle of Bunker Hill, Colonel William...Ch. 4 - A During the battle of Bunker Hill, Colonel...Ch. 4 - A softball is hit with an initial velocity of 29.0...Ch. 4 - Figure P4.8 shows the motion diagram of two balls....Ch. 4 - A circus performer throws an apple toward a hoop...Ch. 4 - An arrow is fired with initial velocity v0 at an...Ch. 4 - A rock is thrown horizontally off a 56.0-m-high...Ch. 4 - A projectile is launched up and to the right over...Ch. 4 - Sienna tosses a ball from the window of her...Ch. 4 - Some cats can be trained to jump from one location...Ch. 4 - Dock diving is a great form of athletic...Ch. 4 - A graduate student discovers that the only...Ch. 4 - The bola is a traditional weapon used for tripping...Ch. 4 - In three different driving tests, a car moves with...Ch. 4 - A child swings a tennis ball attached to a 0.750-m...Ch. 4 - A Two particles A and B move at a constant speed...Ch. 4 - Prob. 39PQCh. 4 - Prob. 40PQCh. 4 - Prob. 41PQCh. 4 - A pendulum constructed with a bowling ball at the...Ch. 4 - Prob. 43PQCh. 4 - Prob. 44PQCh. 4 - Pete and Sue, two reckless teenage drivers, are...Ch. 4 - Prob. 46PQCh. 4 - Prob. 47PQCh. 4 - A brother and sister, Alan and Beth, have just...Ch. 4 - A man paddles a canoe in a long, straight section...Ch. 4 - Prob. 50PQCh. 4 - Prob. 51PQCh. 4 - Prob. 52PQCh. 4 - Suppose at one point along the Nile River a...Ch. 4 - Prob. 54PQCh. 4 - Prob. 55PQCh. 4 - Prob. 56PQCh. 4 - Prob. 57PQCh. 4 - Two bicyclists in a sprint race begin from rest...Ch. 4 - A particle has a nonzero acceleration and a...Ch. 4 - A golfer hits his approach shot at an angle of...Ch. 4 - You are watching a friend practice archery when he...Ch. 4 - Prob. 62PQCh. 4 - Prob. 63PQCh. 4 - David Beckham has lined up for one of his famous...Ch. 4 - Prob. 65PQCh. 4 - Prob. 66PQCh. 4 - Prob. 67PQCh. 4 - Frequently, a weapon must be fired at a target...Ch. 4 - Prob. 69PQCh. 4 - Prob. 70PQCh. 4 - Prob. 71PQCh. 4 - An observer sitting on a park bench watches a...Ch. 4 - Prob. 73PQCh. 4 - Prob. 74PQCh. 4 - Prob. 75PQCh. 4 - Prob. 76PQCh. 4 - Prob. 77PQCh. 4 - Prob. 78PQCh. 4 - A circus cat has been trained to leap off a...Ch. 4 - Prob. 80PQCh. 4 - An experimentalist in a laboratory finds that a...Ch. 4 - Prob. 82PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The International Space Station (ISS) experiences an acceleration due to the Earths gravity of 8.83 m/s2. What is the orbital period of the ISS?arrow_forwardA baseball diamond consists of four plates arranged in a square. Each side of the square is 90 ft (27.43 m) long. Use an x y coordinate system with the origin at the center of the diamond as shown in Figure P3.18. a. What is the position of each plate in this system? b. What is the distance from home plate to second base?arrow_forwardAnthony carelessly rolls his toy car off a 74.0-cm-high table. The car strikes the floor a horizontal distance of 97.0 cm from the edge of the table. a. What was the velocity with which the car left the table? b. What was the angle of the cars velocity with respect to the floor just prior to impact?arrow_forward
- A jet fighter pilot knows he is able to withstand an acceleration of 9g before blacking out. The pilot points his plane vertically down while traveling at Mach 3 speed and intends to pull up in a circular maneuver before crashing into the ground. (a) Where does the maximum acceleration occur in the maneuver? (b) What is the minimum radius the pilot can take?arrow_forwardIn the movie Star Wars: The Empire Strikes Back, after being told that Darth Vader is his father, Luke Skywalker falls from a ledge in Cloud City (not on the Earth, so the magnitude of the free-fall acceleration is not necessarily 9.81 m/s2). Suppose he falls a distance of 28.5 m in 2.5 s. Assuming he starts from rest, answer the following questions. a. What is Lukes velocity 2.5 s after he starts to fall? b. What is the constant acceleration due to gravity, experienced by Luke, on Cloud City? Use an upward-pointing y axis.arrow_forwardSome cats can be trained to jump from one location to another and perform other tricks. Kit the cat is going to jump through a hoop. He begins on a wicker cabinet at a height of 1.750 m above the floor and jumps through the center of a vertical hoop, reaching a peak height 3.125 m above the floor. a. With what initial velocity did Kit leave the cabinet if the hoop is at a horizontal distance of 1.544 m from the cabinet? b. If Kit lands on a bed at a horizontal distance of 3.587 m from the cabinet, how high above the ground is the bed?arrow_forward
- In three different driving tests, a car moves with constant speed v0. In case 1, the car passes over a mark painted on a horizontal, straight section of road. In case 2, the car passes over a mark painted at the crest of a small hill. In case 3, the car passes over a mark painted at the bottom of a small dip. The hill and the dip are circular in profile, with the same radius (Fig. P4.36). Rank the cases from greatest to least according to the magnitude of the acceleration of the car when it passes the mark. Explain. FIGURE P4.36arrow_forwardWhile strolling downtown on a Saturday Afternoon, you stumble across an old car show. As you are walking along an alley toward a main street, you glimpse a particularly stylish Alpha Romeo pass by. Tall buildings on either side of the alley obscure your view, so you see the car only as it passes between the buildings. Thinking back to your physics class, you realize that you can calculate the cars acceleration. You estimate the width of the alleyway between the two buildings to be 4 m. The car was in view for 0.5 s. You also heard the engine rev when the car started from a red light, so you know the Alpha Romeo started from rest 2 s before you first saw it. Find the magnitude of its acceleration.arrow_forwardThe bola is a traditional weapon used for tripping up or grounding an animal (Fig. P4.35). Once it is set into motion, each ball at the end of the bola can be thought of as a single object in uniform circular motion. Suppose it takes the bola 0.3250 s to traverse a circular path with a radius of 0.8661 m. What is the magnitude of the centripetal acceleration experienced by either ball at the end of the bola? FIGURE P4.35 A bola is spun in a circle above the hunter, eventually being released and thrown forward.arrow_forward
- A ball starts from rest and accelerates at 0.500 m/s2 while moving down an inclined plane 9.00 m long. When it reaches the bottom, the ball rolls up another plane, where it comes to rest after moving 15.0 m on that plane. (a) What is the speed of the ball at the bottom of the first plane? (b) During what time interval does the ball roll down the first plane? (c) What is the acceleration along the second plane? (d) What is the balls speed 8.00 m along the second plane?arrow_forwardA physics student stands on a second-story balcony and uses a potato gun to launch a potato horizontally with speed v. The potato has flight time t and lands on the ground a horizontal distance d from the balcony. a. If the launch speed of the potato were doubled, would the time of flight increase, decrease, or stay the same? If the flight time changes, would it double or be halved? Explain. b. If the launch speed of the potato were doubled, would the horizontal distance increase, decrease, or stay the same? If the horizontal distance changes, would it double or be halved? Explain.arrow_forwardA firecracker explodes into four equal pieces (Fig. P3.35). Given the magnitude and direction of the velocity for each piece and the coordinate system shown, determine the x and y velocity components for each piece of the firecracker.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Vectors and 2D Motion: Crash Course Physics #4; Author: CrashCourse;https://www.youtube.com/watch?v=w3BhzYI6zXU;License: Standard YouTube License, CC-BY