Modern Physics for Scientists and Engineers
4th Edition
ISBN: 9781133103721
Author: Stephen T. Thornton, Andrew Rex
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 6Q
To determine
When the voltage increases above 5 V in the Franck-Hertz experiment, the reason why doesn’t the current suddenly jump back up to the value it had below 5 V.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
As the voltage increases above 5 V in the Franck-Hertz experiment, why doesn’t the current suddenly jump back up to the value it had below 5 V?
In the Millikan oil drop experiment tiny charged oil droplets generated by a spray are allowed to fall under gravity through a hole in a top electrode, T, towards a bottom electrode B separated from T by 1 cm. When a holding voltage Vh = +0.25V is applied between T and B the droplets are seen to be suspended motionless between the electrodes.
What is the specific charge of the droplet q/m?
The main equation we are using to measure the e/m ratio is:
e
2V
m
p2 B?
If the anode voltage V is increased by 4 times and the magnetic field was kept constant, the
electron beam's deflection radius will be
halved
no change
doubled
O quadrupled
Chapter 4 Solutions
Modern Physics for Scientists and Engineers
Ch. 4 - Prob. 1QCh. 4 - Prob. 2QCh. 4 - Prob. 3QCh. 4 - Prob. 4QCh. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - Prob. 8QCh. 4 - Prob. 9QCh. 4 - Prob. 10Q
Ch. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Prob. 7PCh. 4 - What fraction of 5-MeV α particles will be...Ch. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Prob. 24PCh. 4 - Prob. 25PCh. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - Prob. 37PCh. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In Millikan’s oil-drop experiment, one looks at a small oil drop held motionless between two plates. Take the voltage between the plates to be 2033 V, and the plate separation to be 2.00 cm. The oil drop (of density 0.81 g/cm3 ) has a diameter of 4.0×10-6 m . Find the charge on the drop, in terms of electron units.arrow_forwardThe current of a beam of electrons, each with a speed of 900 m/s, is 5.00 mA. At one point along its path, the beam encounters a potential step of height -1.25 mV.What is the current on the other side of the step boundary?arrow_forwardThe mean free path length of a 0.7-MeV photon in lead is closest to which of the following? (a)0.1039 cm (b)0.6697 cm (c)0.7038 cm (d)1.1394 cm (e)0.8776 cmarrow_forward
- In the Millikan oil drop experiment tiny charged oil droplets generated by a spray are allowed to fall under gravity through a hole in a top electrode, T, towards a bottom electrode B separated from T by 1 cm. When a holding voltage Vh = +0.25V is applied between T and B the droplets are seen to be suspended motionless between the electrodes. What is the specific charge of the droplet q/m? Select one: a. 0.16 C/kg b. 0.392 C/kg с. 2.7 С/kg O d. 1.5 C/kgarrow_forwardle (mA) 50 mW/cm2 TU40 mW/cm² 30 mW/cm² (a) Zero (b) 10 mW/cm² (c) 20 mW/cm² (d) 30 mW/cm² 20 mW/cm² 10 mW/cm2 Dark current V₁: (V) Figure 3 A phototransistor with the characteristic shown in Figure 3 has a supply voltage of 20 V and a collector load resistance of 2.5 Kn. Determine the output voltage when the illumination level isarrow_forwardIn 1927 T. E. Phipps and J. B. Taylor of the University of Illinois reported an important experiment similar to the Stern-Gerlach experiment but using hydrogen atoms instead of silver. This was done because hydrogen is the simplest atom, and the separation of the atomic beam in the inhomogeneous magnetic field would allow a clearer interpretation. The atomic hydrogen beam was produced in a discharge tube having a temperature of 663 K. The highly collimated beam passed along the x direction through an inhomogeneous field (of length 3 cm) having an average gradient of 1240 T/m along the z direction. If the magnetic moment of the hydrogen atom is 1 Bohr magneton, what is the separation of the atomic beam?arrow_forward
- J. J. Thomson is best known for his discoveries about the nature of cathode rays. His other important contribution was the invention, together with one of his students, of the mass spectrometer, a device that measures the ratio of mass m to (positive) charge q of an ion. Figure < 1 of 1 V B, R m + + + ++ +arrow_forwardDiscuss the main difference between an SEM and a TEM.arrow_forwardAn HCl molecule vibrates with a natural frequency of 8.1 x1013 Hz What is the difference in energy (in joules and electron volts) between successive values of the oscillation energy?arrow_forward
- A star has a radius of three times the Sun’s radius, and an average number density of ions a factor of 1.75 higher than that of the Sun. How much time does it take on average for photons to travel across this star compared with the Sun?arrow_forwardCompute the temperature at which the ratio of spontaneous to stimulated emission will be same for a radiation of frequency 2.5 x10^16 Hzarrow_forwardA 0.7 mm diameter superconducting wire is composed of half copper and half superconductor. At 3.2 T it is capable of carrying 2110 Amps. Assume 4.5 cm of that wire slides perpendicularly to the magnetic field due to the Lorentz forces. How far, in meters, did the wire slide to generate 0.002 J heat, assuming all the frictional energy was converted to heat in the section of wire?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning