Modern Physics for Scientists and Engineers
4th Edition
ISBN: 9781133103721
Author: Stephen T. Thornton, Andrew Rex
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 49P
To determine
The value of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The elliptical galaxy NGC 4889 is the largest galaxy in the Coma Cluster (shown in the image below taken by the Hubble Space Telescope). After analysing the spectrum of NGC 4889, an astronomer identifies a spectral line as being CaII (singly ionised Calcium) with a measured wavelength of 401.8 nm. The true, rest wavelength of this spectral line, measured in a lab, is 393.3 nm. Using a Hubble constant of ?0 = 70 km/s/Mpc, find the distance to this galaxy cluster. Give your answer in megaparsecs and in light-years.
B9
Give the peak wavelengths, λpeak, for each of the following cases. State which portion of the electromagnetic spectrum it falls within.
The red giant star Betelgeuse, with T = 3600 K. (In nm.)
Chapter 4 Solutions
Modern Physics for Scientists and Engineers
Ch. 4 - Prob. 1QCh. 4 - Prob. 2QCh. 4 - Prob. 3QCh. 4 - Prob. 4QCh. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - Prob. 8QCh. 4 - Prob. 9QCh. 4 - Prob. 10Q
Ch. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Prob. 7PCh. 4 - What fraction of 5-MeV α particles will be...Ch. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Prob. 24PCh. 4 - Prob. 25PCh. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - Prob. 37PCh. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In a supercollider at CERN, protons are accelerated to velocities of 0.25c. What are their wavelengths at this speed? What are their kinetic energies? If a beam of protons were to gain its kinetic energy in only one pass through a potential difference, how high would this potential difference have to be? (Rest mass energy of a proton is E0=938 MeV).arrow_forwardImagine our solar system is moving in the Milky Way toward a group of three stars. Star A is a blue star that is slightly closer to us than the other two. Star B is a red star that is farthest away from us. Star C is a yellow star that is halfway between Stars A and B. Which of these three stars, if any, will give off light that appears to be redshifted? А. А В. В O C. C D. All three stars will appear to be redshifted. E. None of these stars will appear to be redshifted.arrow_forwardWhat will be the energy associated with a blue photon (in electronvolts, eV), if the frequency of the blue light is 650 THz (Terahertz (THz); 1 Tera = 1012)? [Hint: Use Planck's equation: E - hf to calculate the photon energy! h- Planck's constant – 6.63 x 10-34 Js = 4.14 x1015 eVs] A. 6.5 eV B. 6.5×10-3 eV C. 2.7 eV D. 2.7×10-27eV E. 2.7x107 eVarrow_forward
- Calculate the wavelengths associated with an electron and a proton, each travelling at 9.0% of the speed of light.λelectron: λproton:arrow_forwardPlease don't provide handwrittin solution...arrow_forwardProblem 3: Two stars, M and N, from the same galaxy (at the same distance from earth) are observed to have the same luminosity (that is, they emit the same amount of energy per unit time). Star M is red, its spectrum peaks 2.4 × 1015s-1 while star N is white, its spectrum peaks at w = 3.6 x 1015s-1. Assuming that both stars radiate as black body, what is the at w = ratio of their radii?arrow_forward
- The universe is filled with thermal radiation, which has a blackbody spectrum at an effective temperature of 2.7K. Calculate the peak wavelength of this radiation.arrow_forwardThe wavelength of the peak of the blackbody distribution was found to follow Wein’s Displacement Law. Calculate the peak wavelength of a bluish-white star that radiates at temperature 20000 K. a) 145 nm b) 100 nm c) 114 nm d) 155 nmarrow_forwardSuppose a star 1000 times brighter than our Sun (that is, emitting 1000 times the power) suddenly goes supernova. Using data from Table: (a) By what factor does its power output increase? (b) How many times brighter than our entire Milky Way galaxy is the supernova? (c) Based on your answers, discuss whether it should be possible to observe supernovas in distant galaxies. Note that there are on the order of 1011 observable galaxies, the average brightness of which is somewhat less than our own galaxy.arrow_forward
- A east.cengagenow.com/ilrn/takeAssignment/takeCovalentActivity.do?locator=assignment-take AM radio stations broadcast at frequencies between 530 kHz and 1700 kHz. (1 kHz = 10° /s.) For a station broadcasting at 1.17 × 10³ kHz, what is the energy of this radio wave? Note that Planck's constant is 6.63 x 10-34 J.s, and the speed of light is 3.00 x 10 m/s. Energy = Submit Answer Try Another Version 6 item attempts remaining Previous Next P Type here to search 12:03 PM 12/8/2021arrow_forwardA stars wavelength is observed to be 200 nm. Calculate the approximate surface temperature of the stararrow_forwardWhat is the smallest wavelength, in nvm, of light that we can normally see?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax