Concept explainers
A person pushes a 14.0-kg lawn mower at constant speed with a force of F = 88.0 N directed along the handle, which is at an angle of 45.0° to the horizontal (Fig. 4-58) (a) Draw the free-body diagram showing all forces acting on the mower. Calculate (b) the horizontal friction force on the mower, then (c) the normal force exerted vertically upward on the mower by the ground (d) What force must the person exert on the lawn mower to accelerate it from rest to 1.5 m/s in 2.5 seconds, assuming the same friction force?
Figure 4-58 Problem 50.
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Physics: Principles with Applications
Additional Science Textbook Solutions
Essential University Physics: Volume 2 (3rd Edition)
University Physics Volume 2
Essential University Physics (3rd Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
The Cosmic Perspective (8th Edition)
University Physics (14th Edition)
- A truck is traveling horizontally to the right (Fig. 4–-38). When the truck starts to slow down, the crate on the (frictionless) truck bed starts to slide. In what direction could the net force be on the crate? (a) No direction. The net force is zero. (b) Straight down (because of gravity). (c) Straight up (the normal force). (d) Horizontal and to the right. (e) Horizontal and to the left. FIGURE 4–38 MisConceptual Question 1.arrow_forward12. The box of donuts in Fig. 5-32 has a weight component of 5 N along the frictionless ramp. The force on the box from the cord has magnitude T. When the box is (a) stationary, (b) moving up the ramp at constant speed, (c) moving down the ramp at constant speed, (d) moving up the ramp at decreasing speed, and (e) moving down the ramp at decreasing speed, is T equal to, greater than, or less than 5 N? FRESH DONUTSarrow_forward(a) What minimum force F is needed to lift the piano (mass M) using the pulley apparatus shown in Fig. 4–66? (b) Determine the tension in each section of rope: Fr1, Fr2, Fr3, and Fr4. Assume pulleys are massless and frictionless, and that ropes are massless. FT3 F72 FTI FT4 F FIGURE 4-66 Problem 76. सarrow_forward
- 3-34. Romeo tries to reach Juliet by climbing with constant velocity up a rope which is knotted at point A. Any of the three segments of the rope can sustain a maximum force of 2 kN before it breaks. Determine if Romeo, who has a mass of 65 kg, can climb the rope, and if so, can he along with his Juliet, who has a mass of 60 kg, climb down with constant velocity? B 60° Aarrow_forward(True or False) If an object is moving right and a frictional force is acting on the object, then the frictional force must always be acting left.arrow_forward68P. A 5.00 kg block is pulled along a horizontal frictionless floor by a cord that exerts a force F= 12.ON at an angle 6= 25.0 above the horizontal, as shown in Fig. 5-57. (a) What is the acceleration of the block? (b) The force F is slowly increased. What is its value just before the block is lifted (completely) off the floor? (c) What is the acceleration of the block just before it is lifted (completely) off the floor? %3D 5.00 25.0 kgarrow_forward
- (II) A person pushes a 14.0-kg lawn mower at constant speed with a force of F = 88.0 N directed along the handle, which is at an angle of 45.0° to the horizontal (Fig. 4–58). (a) Draw the free-body diagram showing all forces acting on the mower. Calculate (b) the horizontal friction force on the mower, then (c) the normal force exerted vertically upward on the mower by the ground. (d) What force must the person exert on the lawn mower to accelerate it from rest to 1.5 m/s in 2.5 seconds, assuming the same friction force? F 45° FIGURE 4-58 Problem 50.arrow_forwardA stone hangs by a fine thread from the ceiling, and a section of the same thread dangles from the bottom of the stone (Fig. 4–36). If a person gives a sharp pull on the dangling thread, where is the thread likely to break: below the stone or above it? What if the person gives a slow and steady pull? Explain your answers. FIGURE 4-36 Question 9.arrow_forwardAs shown in Fig. 4–70, five balls (masses 2.00, 2.05, 2.10, 2.15, 2.20 kg) hang from a crossbar. Each mass is sup- ported by "5-lb test" fishing line which will break when its tension force exceeds 22.2 N (= 5.00 lb). When this device is placed in an elevator, which accelerates upward, only the lines attached to the 2.05 and 2.00 kg masses do not break. Within what range is the elevator's acceleration? 2.20 2.15 2.10 .05 2.00 kg| FIGURE 4-70 Problem 84.arrow_forward
- HW QI) Knowing that the coefficient of friction between the 25-kg block and the incline is µ = 0.25, determine (a) the smallest value of P required to start the block moving up the incline, (b) the corresponding value of B. P 25 kg 30° Q2) The coefficients of friction between the block and the rail are u. = 0.30 and le = 0.25. Knowing that 0=65°, determine the smallest value of P required (a) to start the block moving up the rail, (b) to keep it from moving down. 35° 500 N Q3) The coefficients of friction are . = 0.40 and ue = 0.30 between all surfaces of contact. Determine the smallest force P required to start the 30-kg block moving if cable AB (a) is attached as shown, (b) is removed. A 20 kg 30 kgarrow_forwardThe normal force on an extreme skier descending a very steep slope (Fig. 4–42) can be zero if(a) his speed is great enough.(b) he leaves the slope (no longer touches the snow).(c) the slope is greater than 75°.(d) the slope is vertical (90°).arrow_forwardA bear sling, Fig. 4–40, is used in some national parks for placing backpackers' food out of the reach of bears. As the backpacker raises the pack by pulling down on the rope, the force F needed: (a) decreases as the pack rises until the rope is straight across. (b) doesn't change. (c) increases until the rope is straight. (d) increases but the rope always sags where the pack hangs. F FIGURE 4–40 MisConceptual Question 4.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning