Physics: Principles with Applications
7th Edition
ISBN: 9780321625922
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4P
According to a simplified model of a mammalian heart, at each pulse approximately 20 g of blood is accelerated from 0.25 m/s to 0.35 m/s during a period of 0.10 s. What is the magnitude of the force exerted by the heart muscle?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
According to a simplified model of a mammalian heart, at each pulse approximately 20 g of blood is accelerated from 0.25 m/s to 0.35 m/s during a period of 0.10 s. What is the magnitude of the force exerted by the heart muscle?
About 80 g of blood is pumped from the heart during each heartbeat. The blood starts at rest and has a speed of about 0.60 m/s in the aorta. If the pumping takes 0.17 s, What is the magnitude of the average force on the blood?
A car of mass 1.2 103 kg is traveling east at a speed of 24 m/s along a horizontal roadway. When its brakes are applied, the car stops in 5.3 s. What is the average horizontal force exerted on the car while it is braking?
Chapter 4 Solutions
Physics: Principles with Applications
Ch. 4 - A 150-kg football player collides head-on with a...Ch. 4 - A line by the poet T. S. Eliot (from Murder in the...Ch. 4 - Why does a child in a wagon seem to fall backward...Ch. 4 - A box rests on the (frictionless) bed of a truck....Ch. 4 - Prob. 3QCh. 4 - If the acceleration of an object is zero, are no...Ch. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - (a) Why do you push down harder on the pedals of a...
Ch. 4 - A stone hangs by a fine thread from the ceiling,...Ch. 4 - Prob. 10QCh. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 17QCh. 4 - Prob. 18QCh. 4 - Prob. 19QCh. 4 - A block is given a brief push so that it slides up...Ch. 4 - Prob. 21QCh. 4 - Prob. 22QCh. 4 - A truck is traveling horizontally to the right...Ch. 4 - You are trying to push your stalled car. Although...Ch. 4 - Matt, in the foreground of Fig. 4-39, is able to...Ch. 4 - A bear sling, Fig. 4-40, is used in some national...Ch. 4 - What causes the boat in Fig. 4-41 to move forward?...Ch. 4 - A person stands on a scale in an elevator. His...Ch. 4 - When a skier skis down a hill, the normal force...Ch. 4 - A golf ball is hit with a golf club. While the...Ch. 4 - Suppose an object is accelerated by a force of 100...Ch. 4 - You are pushing a heavy box across a rough floor....Ch. 4 - Prob. 11MCQCh. 4 - The normal force on an extreme skier descending a...Ch. 4 - To pull an old stump out of the ground, you and a...Ch. 4 - What force is needed to accelerate a sled (mass =...Ch. 4 - Prob. 2PCh. 4 - How much tension must a rope withstand if it is...Ch. 4 - According to a simplified model of a mammalian...Ch. 4 - Superman must stop a 120-km/h train in 150 m to...Ch. 4 - A person has a reasonable chance of surviving an...Ch. 4 - What average force is required to stop a 950-kg...Ch. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - A box weighing 77.0 N rests on a table. A rope...Ch. 4 - Figure 4-46
Problem 21.
21. (I) Draw the free-body...Ch. 4 - Prob. 22PCh. 4 - Arlene is to walk across a “high wire" strung...Ch. 4 - A window washer pulls herself upward using the...Ch. 4 - One 3.2-kg paint bucket is hanging by a massless...Ch. 4 - Prob. 26PCh. 4 - A train locomotive is pulling two cars of the same...Ch. 4 - Prob. 28PCh. 4 - At the instant a race began, a 65-kg sprinter...Ch. 4 - A 27-kg chandelier hangs from a ceiling on a...Ch. 4 - Prob. 31PCh. 4 - Figure 4-53 [shows a block (mass mA) on a smooth...Ch. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - 35. (Ill) Suppose the pulley in Fig. 4-55 is...Ch. 4 - Prob. 36PCh. 4 - A force of 35.0 N is required to start a 6.0-kg...Ch. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - A box is given a push so that it slides across the...Ch. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - 46. (II) For the system of Fig. 4-32 (Example...Ch. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - A person pushes a 14.0-kg lawn mower at constant...Ch. 4 - Prob. 51PCh. 4 - (a) A box sits at rest on a rough 33° inclined...Ch. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - A 25.0-kg box is released on a 27° incline and...Ch. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - The crate shown in Fig. 4-60 lies on a plane...Ch. 4 - A crate is given an initial speed of 3.0 m/s up...Ch. 4 - Prob. 61PCh. 4 - Prob. 62PCh. 4 - The coefficient of kinetic friction for a 22-kg...Ch. 4 - On an icy day, you worry about parking your car in...Ch. 4 - Two masses mA= 2.0 kg and mB= 5.0 kg are on...Ch. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - A 2.0-kg purse is dropped from the top of the...Ch. 4 - Prob. 69GPCh. 4 - 70. A 75.0-kg person stands on a scale in an...Ch. 4 - Prob. 71GPCh. 4 - Prob. 72GPCh. 4 - Prob. 73GPCh. 4 - Prob. 74GPCh. 4 - Prob. 75GPCh. 4 - (a) What minimum force F is needed to lift the...Ch. 4 - Prob. 77GPCh. 4 - A jet aircraft is accelerating at 3.8 m/s2 as it...Ch. 4 - Prob. 79GPCh. 4 - Prob. 80GPCh. 4 - Prob. 81GPCh. 4 - Prob. 82GPCh. 4 - Prob. 83GPCh. 4 - Prob. 84GPCh. 4 - Prob. 85GPCh. 4 - Prob. 86GPCh. 4 - Prob. 87GPCh. 4 - Prob. 88GPCh. 4 - Prob. 89GPCh. 4 - Prob. 90GPCh. 4 - A 72-kg water skier is being accelerated by a ski...Ch. 4 - Prob. 92GPCh. 4 - Prob. 93GPCh. 4 - Prob. 94GPCh. 4 - Prob. 95GPCh. 4 - Prob. 96GPCh. 4 - Prob. 97GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
An objects acceleration increases quadratically with time; a(t) = bt2, where b = 0.041 m/s4. If the object star...
Essential University Physics (3rd Edition)
26. Where is the hydrogen? The average temperature of the atmosphere near the surface of the earth is about 20°...
College Physics (10th Edition)
Chinas high-speed rail network calls for a minimum turn radius of 7.0 km for 350-km/h trains. Whats the magnitu...
Essential University Physics: Volume 1 (3rd Edition)
Consider the two experiments described above. When the momentum of an object or system of objects did not chang...
Tutorials in Introductory Physics
The specific heat capacity of Albertsons Rotini Tricolore is approximately 1.8J/gC. Suppose you toss 340 g of t...
An Introduction to Thermal Physics
18.29 We have two equal-size boxes, A and B. Each box contains gas that behaves as an ideal gas. We insert a th...
University Physics with Modern Physics (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- On a horizontal air track, a glider of mass m carries a -shaped post. The post supports a small dense sphere, also of mass m, hanging just above the top of the glider on a cord of length L. The glider and sphere are initially at rest with the cord vertical. A constant horizontal force of magnitude F is applied to the glider, moving it through displacement x1; then the force is removed. During the time interval when the force is applied, the sphere moves through a displacement with horizontal component x2. (a) Find the horizontal component of the velocity of the center of mass of the glidersphere system when the force is removed. (b) After the force is removed, the glider continues to move on the track and the sphere swings back and forth, both without friction. Find an expression for the largest angle the cord makes with the vertical.arrow_forwardThe speed of a particle of mass m varies with the distance x as υ(x) = αx−n. Assume υ(x = 0) = 0 at t = 0. (a) Find the force F(x) responsible. (b) Determine x(t) and (c) F(t).arrow_forwardAs a fish jumps vertically out of the water, assume that only two significant forces act on it: an upward force F exerted by the tail fin and the downward force due to gravity. A record Chinook salmon has a length of 1.50 m and a mass of 61.0 kg. If this fish is moving upward at 3.00 m/s as its head first breaks the surface and has an upward speed of 6.00 m/s after two-thirds of its length has left the surface, assume constant acceleration and determine (a) the salmon’s acceleration and (b) the magnitude of the force F during this interval.arrow_forward
- As a fish jumps vertically out of the water, assume that only two significant forces act on it: an upward force F exerted by the tail fin and the downward force due to gravity. A record Chinook salmon has a length of 1.50 m and a mass of 54.5 kg. If this fish is moving upward at 3.00 m/s as its head first breaks the surface and has an upward speed of 6.30 m/s after two-thirds of its length has left the surface, assume constant acceleration and determine the following. (a) the salmon's acceleration m/s2 upward (b) the magnitude of the force F during this intervalarrow_forwardAs a fish jumps vertically out of the water, assume that only two significant forces act on it: an upward force F exerted by a tail fin and the downward force due to gravity. A record Chinook salmon has a length of 1.50 m and a mass of 48.5 kg. if this fish is moving upward at 3.00 m/s as its head first breaks the surface and has an upward speed of 5.80 m/s after two-thirds of its length has left the surface. what is the magnitude of the force F during the intervalarrow_forwardan object of mass 0.77 kg is initially at rest. When a force acts on it for 2.9 ms it acquires a speed of 12.7m/s. find the magnitude (in N) of the average force on the object during the 2.9 msarrow_forward
- A swimmer has just jumped off a diving board. The swimmer has a mass of m = 56.4 kg and jumps off a board that is h = 7.15 m above the water. Exactly T = 4.1 seconds after entering the water, her downward motion is stopped. a) Write an expression for the magnitude of the average upward force Fw exerted on her by the water in terms of the variables given in the problem statement and g (9.80 m/s2). b) What is the magnitude of the average upward force Fw (in N) exerted on her by the water?arrow_forwardA rock of mass m = 1.9 kg is released from a height of h = 3.2 m into a basin of water. At a time of t = 1.17 s after striking the surface of the water, the rock's velocity has decreased by 50%.What is the magnitude of the average force the rock experiences, in newtons, during the time t? F ave=arrow_forwardYou are pulling your younger sister along in a small wheeled cart. You weigh 65.0 kg and the combined mass of your sister and the cart is 35.0 kg. You are pulling the cart via a short rope which you pull horizontally. You hold one end of the rope and your sister holds the other end. If you are accelerating at a rate of 0.10 m s−2, the rope is inelastic, and the frictional force acting upon the cart is 30 N: a) What is the tension in the rope? (b) What force are you applying to the ground in order to produce this acceleration?arrow_forward
- A waitress shoves a ketchup bottle with mass 0.45 kg to her right along a smooth, level lunch counter. The bottle leaves her hand moving at 2.0 m>s, then slows down as it slides because of a constant horizontal friction force exerted on it by the countertop. It slides for 1.0 m before coming to rest. What are the magnitude and direction of the friction force acting on the bottle?arrow_forwardas a fish jump vertically out of the water, assume that only two significant forces act on it: an upward force F exerted by the tail fin and the downward force due to gravity. a force chinook salmon has a length of 1.50 m and a mass of 48.5 kg. if the fish is moving upward at 3.00 m/s as its head first breaks the surface and has an upward speed of 5.80 m/s after two-thirds of its length has left the surface, assume constant acceleration and determine the following. a. the salmon's acceleration b. the magnitude of the force F during this intervalarrow_forwardReview Conceptual Example 16 as background for this problem. The water skier there has a mass of 80.0 kg. Find the magnitude of the net force acting on the skier when (a) she is accelerated from rest to a speed of 11.0 m/s in 8.00 s and (b) she lets go of the tow rope and glides to a halt in 23.0 s.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY