Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 46P
In the situation described in Problem 45 and Figure P4.45, the masses of the rope, spring balance, and pulley are negligible. Nick’s feet are not touching the ground. (a) Assume Nick is momentarily at rest when he stops pulling down on the rope and passes the end of the rope to another child, of weight 440 N, who is standing on the ground next to him. The rope does not break. Describe the ensuing motion. (b) Instead, assume Nick is momentarily at rest when he ties the end of the rope to a strong hook projecting from the tree trunk. Explain why this action can make the rope break.
Figure P4.45
Problems 45 and 46.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider a 100 kg box which is at the rest. Now,
two forces are applied to the box and it starts to
move. Consider F1 = 400 N and F2 = 500 N and 0
%3D
= 60. Here F2 is a horizontal force. Find (a) the
normal reaction force from ground (N), (b) the
velocity if it slides 5 m. Take coefficient of kinetic
friction to be 0.2. Assume g = 9.81 m/s2.
%3D
Two crates, one with mass 4.00 kg and the other with mass 6.00 kg, sit on the frictionless
surface of a frozen pond, connected by a light rope (Fig. P4.39). A woman wearing golf shoes (for traction) pulls horizontally on the 6.00-kg crate with a force F that gives the crate an acceleration of
2.90 m/s^2.
A). What is the acceleration of the 4.00-kg crate?
B). Draw a free-body diagram for the 4.00-kg crate. Use that diagram and Newton’s second law to
find the tension T in the rope that connects the two crates.
C). Draw a free-body diagram for the 6.00-kg crate. What is the direction of the net force on the
6.00-kg crate? Which is larger in magnitude, T or F?
D). Use part C and Newton’s second law to calculate the magnitude of F.
Objects with masses m1 = 10.0 kg and m2 = 5.00 kg are connected by a light string that passes over a frictionless pulley as in Figure P4. 36. If, when the system starts from rest, m2 falls 1.00 m in 1.20 s, determine the coefficient of kinetic friction between m1 and the table.
Chapter 4 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 4.1 - Which of the following statements is most correct?...Ch. 4.4 - An object experiences no acceleration. Which of...Ch. 4.4 - You push an object, initially at rest, across a...Ch. 4.5 - Prob. 4.4QQCh. 4.6 - (i) If a fly collides with the windshield of a...Ch. 4.6 - Which of the following is the reaction force to...Ch. 4.7 - Consider the two situations shown in Figure 4.8,...Ch. 4 - Prob. 1OQCh. 4 - Prob. 2OQCh. 4 - Prob. 3OQ
Ch. 4 - Prob. 4OQCh. 4 - Prob. 5OQCh. 4 - Prob. 6OQCh. 4 - Prob. 1CQCh. 4 - If a car is traveling due westward with a constant...Ch. 4 - A person holds a ball in her hand. (a) Identify...Ch. 4 - Prob. 4CQCh. 4 - If you hold a horizontal metal bar several...Ch. 4 - Prob. 6CQCh. 4 - Prob. 7CQCh. 4 - Prob. 8CQCh. 4 - Balancing carefully, three boys inch out onto a...Ch. 4 - Prob. 10CQCh. 4 - Prob. 11CQCh. 4 - Prob. 12CQCh. 4 - Prob. 13CQCh. 4 - Give reasons for the answers to each of the...Ch. 4 - Prob. 15CQCh. 4 - In Figure CQ4.16, the light, taut, unstretchable...Ch. 4 - Prob. 17CQCh. 4 - Prob. 18CQCh. 4 - Prob. 19CQCh. 4 - A force F applied to an object of mass m1 produces...Ch. 4 - (a) A car with a mass of 850 kg is moving to the...Ch. 4 - A toy rocket engine is securely fastened to a...Ch. 4 - Two forces, F1=(6i4j)N and F2=(3i+7j)N, act on a...Ch. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Two forces F1 and F2 act on a 5.00-kg object....Ch. 4 - A 3.00-kg object is moving in a plane, with its x...Ch. 4 - A woman weighs 120 lb. Determine (a) her weight in...Ch. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - You stand on the seat of a chair and then hop off....Ch. 4 - Prob. 17PCh. 4 - A block slides down a frictionless plane having an...Ch. 4 - Prob. 19PCh. 4 - A setup similar to the one shown in Figure P4.20...Ch. 4 - Prob. 21PCh. 4 - The systems shown in Figure P4.22 are in...Ch. 4 - A bag of cement weighing 325 N hangs in...Ch. 4 - Prob. 24PCh. 4 - In Example 4.6, we investigated the apparent...Ch. 4 - Figure P4.26 shows loads hanging from the ceiling...Ch. 4 - Prob. 27PCh. 4 - An object of mass m1 = 5.00 kg placed on a...Ch. 4 - An object of mass m = 1.00 kg is observed to have...Ch. 4 - Two objects are connected by a light string that...Ch. 4 - Prob. 31PCh. 4 - A car is stuck in the mud. A tow truck pulls on...Ch. 4 - Two blocks, each of mass m = 3.50 kg, are hung...Ch. 4 - Two blocks, each of mass m, are hung from the...Ch. 4 - In Figure P4.35, the man and the platform together...Ch. 4 - Two objects with masses of 3.00 kg and 5.00 kg are...Ch. 4 - A frictionless plane is 10.0 m long and inclined...Ch. 4 - Prob. 39PCh. 4 - An object of mass m1 hangs from a string that...Ch. 4 - A young woman buys an inexpensive used car for...Ch. 4 - A 1 000-kg car is pulling a 300-kg trailer....Ch. 4 - An object of mass M is held in place by an applied...Ch. 4 - Prob. 44PCh. 4 - An inventive child named Nick wants to reach an...Ch. 4 - In the situation described in Problem 45 and...Ch. 4 - Two blocks of mass 3.50 kg and 8.00 kg are...Ch. 4 - Prob. 48PCh. 4 - In Example 4.5, we pushed on two blocks on a...Ch. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Review. A block of mass m = 2.00 kg is released...Ch. 4 - A student is asked to measure the acceleration of...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - A car accelerates down a hill (Fig. P4.57), going...Ch. 4 - Prob. 58PCh. 4 - In Figure P4.53, the incline has mass M and is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Let us make the (unrealistic) assumption that a boat of mass m gliding with initial velocity v0 in water is slowed by a viscous retarding force of magnitude bv2, where b is a constant, (a) Find and sketch v(t). How long does it take the boat to reach a speed of v0/l000? (b) Find x(t). How far does the boat travel in this time? Let m = 200 kg, v0 = 2 m/s, and b = 0.2 Nm-2s2.arrow_forwardTwo blocks of mass 3.50 kg and 8.00 kg are connected by a massless string that passes over a frictionless pulley (Fig. P4.47). The inclines are frictionless. Find (a) the magnitude of the acceleration of each block and (b) the tension in the string. Figure P4.47arrow_forwardAn object of mass M is held in place by an applied force F and a pulley system as shown in Figure P4.43. The pulleys are massless and frictionless. (a) Draw diagrams showing the forces on each pulley. Find (b) the tension in each section of rope, T1, T2, T3, T4, and T5 and (c) the magnitude of F. Figure P4.43 44. Any device that allows you to increase the force you exert is a kind of machine. Some machines, such as the prybar or the inclined plane, are very simple. Some machines do not even look like machines. For example, your car is stuck in the mud and you cant pull hard enough to get it out. You do, however, have a long cable that you connect taut between your front bumper and the trunk of a stout tree. You now pull sideways on the cable at its midpoint, exerting a force f. Each half of the cable is displaced through a small angle from the straight line between the ends of the cable. (a) Deduce an expression for the force acting on the car. (b) Evaluate the cable tension for the case where = 7.00 and f = 100 N.arrow_forward
- An object of mass m1 = 5.00 kg placed on a frictionless, horizontal table is connected to a string that passes over a pulley and then is fastened to a hanging object of mass m2 = 9.00 kg as shown in Figure P4.28. (a) Draw free-body diagrams of both objects. Find (b) the magnitude of the acceleration of the objects and (c) the tension in the string. Figure P4.28arrow_forwardTwo objects are connected by a light string that passes over a frictionless pulley as shown in Figure P4.30. Assume the incline is frictionless and take m1 = 2.00 kg, m2 = 6.00 kg, and = 55.0. (a) Draw free-body diagrams of both objects. Find (b) the magnitude of the acceleration of the objects, (c) the tension in the string, and (d) the speed of each object 2.00 s after it is released from rest. Figure P4.30arrow_forwardTwo blocks, each of mass m = 3.50 kg, are hung from the ceiling of an elevator as in Figure P4.33. (a) If the elevator moves with an upward acceleration a of magnitude 1.60 m/s2, find the tensions T1 and T2 in the upper and lower strings. (b) If the strings can withstand a maximum tension of 85.0 N, what maximum acceleration can the elevator have before a string breaks? Figure P4.33 Problems 33 and 34.arrow_forward
- A block with a mass of 6.5 kg is sitting on top of another block of the same size, but the bottom block has a mass of 3.7 kg. Both blocks are in free fall (i.e. accelerating downward at 9.8 m/s2). What is the magnitude of the normal force (number of Newtons) with which the bottom cube is acting on the top cube ignoring air resistance?arrow_forwardTwo blocks are positioned on surfaces, each incline at the same angle at 57.9° with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, So the block can slide together. The mass of the black block is 5.53 kg, and this time there is no friction. What must be the mass of the white block if both blocks are to slide to the left at an acceleration of 1.5 m/s^2?arrow_forwardTwo blocks are positioned on surfaces, each inclined at the same angle of 47.2 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 7.58 kg, and this time there is NO friction. What is must be the mass of the white block if both blocks are to slide to the LEFT at an acceleration of 1.5 m/s^2? 1 7.71 kg 2 11.57 kg 3 6.08 kg 4 17.36 kgarrow_forward
- Two blocks are positioned on surfaces, each inclined at the same angle of 47.7 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 7.01 kg, and this time there is NO friction. What is must be the mass of the white block if both blocks are to slide to the LEFT at an acceleration of 1.5 m/s^2?arrow_forwardConsider a light pulley hanging from the ceiling. A rope passes over this pulley with a 21.6 kg block hanging from the left side of the pulley and a 5 kg block hanging from the right side of the pulley. Both blocks are accelerating. What of the magnitude of the tension in the rope ?arrow_forwardTwo blocks are connected by a string as shown. The inclination of the ramp is θ = 39° while the masses of the blocks are m1 = 7.8 kg and m2 = 19.6 kg. Friction is negligible. Write an equation for the magnitude of the acceleration the two blocks experience. Give your equation in terms of m1, m2, θ, and the acceleration due to gravity g. Consider down the ramp to be the negative direction in this calculation. What is the magnitude of the acceleration of each block in ms2ms2? Write an equation for the tension in the string in terms of m2, the acceleration due to gravity g, and the acceleration of the two blocks a. What is the tension in the rope in newtons?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Drawing Free-Body Diagrams With Examples; Author: The Physics Classroom;https://www.youtube.com/watch?v=3rZR7FSSidc;License: Standard Youtube License