Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.63AP
A flea is at point Ⓐ on a horizontal turntable, 10.0 cm from the center. The turntable is rotating at 33.3 rev/min in the clockwise direction. The flea jumps straight up to a height of 5.00 cm. At takeoff, it gives itself no horizontal velocity relative to the turntable. The Ilea lands on the turntable at point Ⓑ. Choose the origin of coor-dinates to be at the center of the turntable and the positive xaxis passing through Ⓐ at the moment of takeoff. Then the original position of the flea is 10.0i cm. (a) Kind die position of point Ⓑ when die Ilea lands. (b) Find die position of point Ⓑ when the flea lands.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A 14.0 [cm] long test tube is placed in a centrifuge, oriented at 30.0º with respect to the vertical as shown. The centrifuge is then turned on, causing the test tube to undergo uniform circular motion at 6.50 × 10^3 [rpm].
What is the radial distance rC of the center of the test tube given that is has an acceleration of 2 347g (where g is acceleration due to gravity)?
A child is holding a string with a ball tied at the end. The childspins around in a circle causing the ball to travel in uniformcircular motion. While doing this, the 1.3 m long string makesa 48.8◦angle below horizontal. What is the tangential speedof the ball?
Solution provided is incorrect. Answer should be v=2.7m/s
A horizontal turntable is rotating clockwise at a speed of 35.5 rev/min. The turntable is oriented in the xy-plane of a coordinate system, with the origin at the center of the turntable, and the +z-axis vertically upward. A point on the turntable is labeled A, and this point is 12.0 cm from the center of the turntable. A jumping spider sits at point A, and at the instant point A crosses the +x-axis (that is, when the position of the spider is 12.0î cm), the spider jumps straight up to a height of 2.00 cm. At takeoff, it gives itself no horizontal velocity relative to the turntable. A short time later, the spider lands back on the turntable. (Express your answers in vector form.)
(a)Find the position (in cm) of point A at the instant the spider lands back on the turntable.
rA = ______cm
(b)Find the position (in cm) of the spider at the instant it lands back on the turntable.
rspider, final = _____cm
Chapter 4 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 4 - Consider the following controls in an automobile...Ch. 4 - (i) As a projectile thrown at an upward angle...Ch. 4 - Rank the launch angles for the five paths in...Ch. 4 - A particle moves in a circular path of radius r...Ch. 4 - A particle moves along a path, and its speed...Ch. 4 - Figure OQ4.1 shows a bird's-eye view of a car...Ch. 4 - Entering his dorm room, a student tosses his book...Ch. 4 - A student throws a heavy red ball horizontally...Ch. 4 - A projectile is launched on the Earth with a...Ch. 4 - Does a car moving around a circular track with...
Ch. 4 - An astronaut hits a golf ball on the Moon. Which...Ch. 4 - A projectile is launched on the Earth with a...Ch. 4 - A girl, moving at 8 m/s on in-line skates, is...Ch. 4 - A sailor drops a wrench front the top of a...Ch. 4 - A baseball is thrown from the outfield toward the...Ch. 4 - Prob. 4.11OQCh. 4 - Prob. 4.12OQCh. 4 - In which of the following situations is the moving...Ch. 4 - Prob. 4.1CQCh. 4 - Ail ice skater is executing a figure eight,...Ch. 4 - If you know the position vectors of a particle at...Ch. 4 - Describe how a driver can steer a car traveling at...Ch. 4 - Prob. 4.5CQCh. 4 - Prob. 4.6CQCh. 4 - Explain whether or not the following particles...Ch. 4 - A motorist drives south at 20.0 m/s for 3.00 min,...Ch. 4 - When the Sun is directly overhead, a hawk dives...Ch. 4 - Suppose the position vector for a particle is...Ch. 4 - The coordinates of an object moving in the xy...Ch. 4 - A golf ball is hit off a tee at the edge of a...Ch. 4 - A particle initially located at the origin has an...Ch. 4 - The vector position of a particle varies in time...Ch. 4 - It is not possible to see very small objects, such...Ch. 4 - A fish swimming in a horizontal plane has velocity...Ch. 4 - Review. A snowmobile is originally at the point...Ch. 4 - Mayan kings and many school sports teams are named...Ch. 4 - An astronaut on a strange planet finds that she...Ch. 4 - In a local bar, a customer slides an empty beer...Ch. 4 - In a local bar. a customer slides an empty beer...Ch. 4 - A projectile is fired in such a way that its...Ch. 4 - To start an avalanche on a mountain slope, an...Ch. 4 - Chinook salmon are able to move through water...Ch. 4 - A rock is thrown upward from level ground in such...Ch. 4 - The speed of a projectile when it reaches its...Ch. 4 - A ball is tossed from an upper-story window of a...Ch. 4 - A firefighter, a distance d from a burning...Ch. 4 - A landscape architect is planning an artificial...Ch. 4 - A placekicker must kick a football from a point...Ch. 4 - A basketball star covers 2.80 m horizontally in a...Ch. 4 - A playground is on the flat roof of a city school,...Ch. 4 - The motion of a human body through space can be...Ch. 4 - A soccer player kicks a rock horizontally off a...Ch. 4 - A projectile is fired from the top of a cliff of...Ch. 4 - A student stands at the edge of a cliff and throws...Ch. 4 - The record distance in the sport of throwing...Ch. 4 - A boy stands on a diving board and tosses a stone...Ch. 4 - A home run is hit in such a way that the baseball...Ch. 4 - The athlete shown in Figure P4.21 rotates a...Ch. 4 - In Example 4.6, we found the centripetal...Ch. 4 - Casting molten metal is important in many...Ch. 4 - A tire 0.500 m in radius rotates at a constant...Ch. 4 - Review. The 20-g centrifuge at NASAs Ames Research...Ch. 4 - An athlete swings a ball, connected to the end of...Ch. 4 - The astronaut orbiting the Earth in Figure P4.19...Ch. 4 - Section 4.5 Tangential and Radial Acceleration...Ch. 4 - A train slows down as it rounds a sharp horizontal...Ch. 4 - A ball swings counterclockwise in a vertical...Ch. 4 - (a) Can a particle moving with instantaneous speed...Ch. 4 - The pilot of an airplane notes that the compass...Ch. 4 - An airplane maintains a speed of 630 km/h relative...Ch. 4 - A moving beltway at an airport has a speed 1 and a...Ch. 4 - A police car traveling at 95.0 km/h is traveling...Ch. 4 - A car travels due east with a speed of 50.0 km/h....Ch. 4 - A bolt drops from the ceiling of a moving train...Ch. 4 - A river has a steady speed of 0.500 m/s. A student...Ch. 4 - A river flows with a steady speed v. A student...Ch. 4 - A Coast Guard cutter detects an unidentified ship...Ch. 4 - A science student is riding on a flatcar of a...Ch. 4 - A farm truck moves due east with a constant...Ch. 4 - A ball on the end of a string is whirled around in...Ch. 4 - A ball is thrown with an initial speed i at an...Ch. 4 - Why is the following situation impassible? A...Ch. 4 - A particle starts from the origin with velocity...Ch. 4 - The Vomit Comet. In microgravity astronaut...Ch. 4 - A basketball player is standing on the floor 10.0...Ch. 4 - Lisa in her Lamborghini accelerates at...Ch. 4 - A boy throws a stone horizontally from the top of...Ch. 4 - A flea is at point on a horizontal turntable,...Ch. 4 - Towns A and B in Figure P4.64 are 80.0 km apart. A...Ch. 4 - A catapult launches a rocket at an angle of 53.0...Ch. 4 - A cannon with a muzzle speed of 1 000 m/s is used...Ch. 4 - Why is the following situation impossible? Albert...Ch. 4 - As some molten metal splashes, one droplet flies...Ch. 4 - An astronaut on the surface of the Moon fires a...Ch. 4 - A pendulum with a cord of length r = 1.00 m swings...Ch. 4 - A hawk is flying horizontally at 10.0 m/s in a...Ch. 4 - A projectile is launched from the point (x = 0, y...Ch. 4 - A spring cannon is located at the edge of a table...Ch. 4 - An outfielder throws a baseball to his catcher in...Ch. 4 - A World War II bomber flies horizontally over...Ch. 4 - A truck loaded with cannonball watermelons stops...Ch. 4 - A car is parked on a steep incline, making an...Ch. 4 - An aging coyote cannot run fast enough to catch a...Ch. 4 - A fisherman sets out upstream on a river. His...Ch. 4 - Do not hurt yourself; do not strike your hand...Ch. 4 - A skier leaves the ramp of a ski jump with a...Ch. 4 - Two swimmers, Chris and Sarah, start together at...Ch. 4 - The water in a river flows uniformly at a constant...Ch. 4 - A person standing at the top of a hemispherical...Ch. 4 - A dive-bomber has a velocity or 280 m/s at ail...Ch. 4 - A projectile is fired up an incline (incline angle...Ch. 4 - A fireworks rocket explodes at height h, the peak...Ch. 4 - In the What If? section of Example 4.5, it was...Ch. 4 - An enemy ship is on the east side of a mountain...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Figure P3.31 represents the total acceleration of a particle moving clockwise in a circle of radius 2.50 m at a certain instant of time. For that instant, find (a) the radial acceleration of the particle, (b) the speed of the particle, and (c) its tangential acceleration.arrow_forwardWhat is the average speed in mi/h of a person at the equator as a result of the Earths rotation? (Take the radius of the Earth to be RE = 4000 mi.)arrow_forwardAn astronaut is tested in a centrifuge with radius 10 m and rotating according to u = 0.30t2. At t= 5.0 s, what are the magnitudes of the (a) angular velocity, (b) linear velocity, (c) tangential acceleration, and (d) radial acceleration?arrow_forward
- A propeller blade at rest starts to rotate fromt = 0 s to t = 1.5 s with a tangential acceleration of the tip of the blade at 1.80 m/s?. The tip of the blade is 1.9 m from the axis of rotation. At t = 1.5 s, what is the total acceleration of the tip of the blade? (Give the magnitude in m/s? and the direction in degrees from the tangent of the circle directed inward. The direction is less than 90°. Due to the nature of this problem, do not use rounded intermediate values in your calculations-including answers submitted in WebAssign.) magnitude m/s? direction ° from the tangent of the circle directed inwardarrow_forwardAt point on a rotating turntable 20.0cm from the center speeds up at a constant rate from therest to a final speed of 0.800m/s . At t=1s find the magnitude and direction of (a) the radialacceleration (b) the tangential acceleration and (c) the total acceleration of the point.arrow_forwardAn astronaut is being tested in a centrifuge. The centrifuge has a radius of 7.30 m and, instarting, rotates according to θ = 0.160t , where t is in seconds and θ is in radians. When t = 3.60s, what are the magnitudes of the astronaut's (a) angular velocity, (b) linear velocity, (c) tangentialacceleration, and (d) radial acceleration?arrow_forward
- At some instant, a particle traveling in a horizontal circular path of radius 8.30 m has a total acceleration with a magnitude of 19.0 m/s² and a constant tangential acceleration of 12.0 m/s². Determine the speed of the particle at this instant and (1/8) revolution later.arrow_forwardA speed skater increases her speed from 10 m/s to 12.5 m/s over a period of 3 s while coming out of a curve of 20 m radius. What are the magnitudes of her radial, tangential, and total accelerations as she leaves the curve? (Remember that ar and at are the vector components of total acceleration.)arrow_forwardAsap pleasearrow_forward
- The main rotor of the helicopter is turning in a horizontal plane at 90.0 rpm. The distance from the center of the rotor shaft to each blade tip is 5.0 m. The linear speed of the tip of the blade is approximately Blank 1 m/s.arrow_forwardThe particle is at rest but decided to move in a circle of radius 0.0023 km. The speed of a particle is v = 1.2 m/s?. The resultant acceleration of the particle at t= 0.5 minutes. (a) What is the magnitude of its radial acceleration? (b) What is the magnitude of its tangential acceleration? (c) What is the total acceleration of the particle?arrow_forwardA motorcycle daredevil plans to ride up a 2.85 m high 29.0° ramp, sail across a 10-m-wide pool filled with hungry crocodiles, and land at ground level on the other side. He has done this stunt many times and approaches it with confidence. Unfortunately, the motorcycle engine dies just as starts up the ramp. He is going 18.2 m/s at that instant, and the rolling friction of his rubber tires is not negligible. Assuming that the local acceleration due to gravity is -9.80 m/s², calculate the landing point (in m) relative to the 10.0 m edge of the pool. (-1.0 m means he was 1.0 m short and in the pool, +1.0 m means he landed 1.0 m past the edge). The coefficient of rolling friction for rubber on ramp is 0.02. Submit Answer Tries 0/10arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY