Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
7th Edition
ISBN: 9780199339136
Author: Adel S. Sedra, Kenneth C. Smith
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.3P
a
To determine
The value of voltage and current labelled in the circuit.
b
To determine
The value of voltage and current labelled in the circuit.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4.68 A half-wave rectifier circuit with a 500-2 load oper-
ates from a 120-V (rms) 60-Hz household supply through a
12-to-1 step-down transformer. It uses a silicon diode that
can be modeled to have a 0.7-V drop for any current. What is
the peak voltage of the rectified output? For what fraction of
the cycle does the diode conduct? What is the average output
voltage? What is the average current in the load?
4.69 A full-wave rectifier circuit with a 500-2 load operates from a 120-V (rms) 60-Hz household
supply through a 6-to-1 transformer having a center-tapped secondary winding. It uses two silicon
diodes that can be modeled to have a 0.7-V drop for all currents. What is the peak voltage of the
rectified output? For what fraction of a cycle does each diode conduct? What is the average output
voltage? What is the average current in the load?
Hint: the average output voltage can be obtained by using the equation below (see plots below too),
but you will need to find out the conduction angle 0 first.
T-0
1
- | (10/Zsinp – 0.7)dø
v0,avg
D1
Us, Vo (V)
6:1
Us
10 V
10 Vans
C0.5 k2
0.7 v-
120 Vrms
T-0
60 Hz
D2
10 Vns
mm
4.70 A full-wave bridge rectifier circuit with a 1-k2 load
operates from a 120-V (rms) 60-Hz household supply
through a 10-to-1 step-down transformer having a single
secondary winding. It uses four diodes, each of which can
be modeled to have a 0.7-V drop for any current. What is
the peak value of the rectified voltage across the load? For
what fraction of a cycle does each diode conduct? What is
the average voltage across the load? What is the average
current through the load?
Chapter 4 Solutions
Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
Ch. 4.1 - Prob. 4.1ECh. 4.1 - Prob. 4.2ECh. 4.1 - Prob. 4.3ECh. 4.1 - Prob. 4.4ECh. 4.1 - Prob. 4.5ECh. 4.2 - Prob. 4.6ECh. 4.2 - Prob. 4.7ECh. 4.2 - Prob. 4.8ECh. 4.2 - Prob. 4.9ECh. 4.3 - Prob. 4.10E
Ch. 4.3 - Prob. D4.11ECh. 4.3 - Prob. 4.12ECh. 4.3 - Prob. 4.13ECh. 4.3 - Prob. 4.14ECh. 4.3 - Prob. D4.15ECh. 4.4 - Prob. 4.16ECh. 4.4 - Prob. 4.17ECh. 4.4 - Prob. 4.18ECh. 4.5 - Prob. 4.19ECh. 4.5 - Prob. 4.20ECh. 4.5 - Prob. 4.21ECh. 4.5 - Prob. 4.22ECh. 4.5 - Prob. 4.23ECh. 4.5 - Prob. 4.24ECh. 4.5 - Prob. 4.25ECh. 4.6 - Prob. 4.26ECh. 4.6 - Prob. 4.27ECh. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. D4.7PCh. 4 - Prob. D4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10PCh. 4 - Prob. D4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. D4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. D4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. D4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. D4.56PCh. 4 - Prob. D4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. D4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. D4.63PCh. 4 - Prob. D4.64PCh. 4 - Prob. D4.65PCh. 4 - Prob. D4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. D4.73PCh. 4 - Prob. D4.74PCh. 4 - Prob. D4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. D4.80PCh. 4 - Prob. D4.81PCh. 4 - Prob. D4.82PCh. 4 - Prob. D4.83PCh. 4 - Prob. D4.84PCh. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - Prob. 4.88PCh. 4 - Prob. 4.89PCh. 4 - Prob. 4.90PCh. 4 - Prob. 4.91PCh. 4 - Prob. 4.92PCh. 4 - Prob. 4.93PCh. 4 - Prob. 4.94PCh. 4 - Prob. 4.95PCh. 4 - Prob. 4.96PCh. 4 - Prob. 4.97P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 4.69 A full-wave rectifier circuit with a 1-k2 load operates from a 120-V (rms) 60-Hz household supply through a 5-to- 1 transformer having a center-tapped secondary winding. It uses two silicon diodes that can be modeled to have a 0.7-V drop for all currents. What is the peak voltage of the recti- fied output? For what fraction of a cycle does each diode conduct? What is the average output voltage? What is the average current in the load?arrow_forwardPlease provide complete and clear solution.arrow_forward4.70 A full-wave bridge-rectifier circuit with a 500-2 load operates from a 120-V (rms) 60-Hz houschold supply through a 6-to-1 step-down transformer having a single secondary winding. It uses four diodes, each of which can be modeled to have a 0.7-V drop for any current. What is the peak value of the rectified voltage across the load? For what fraction of a cycle does each diode conduct? What is the average voltage across the load? What is the average current through the load? 6:1 120 V rms 20 Vms 10.5 kN D2 D3 Vp = 0.7 V ணarrow_forward
- Consider the circuit with three diodes and a AC input, as shown below: D2 R1 D1 D3 R2 Assume that the input AC voltage is Ttsin(100TTT). You may consider the diodes to be ideal. mean voltage generated across resistor R2 is (assuming current direction to be from AC so into R1, through diode network, and through R2 from top to bottom): O a. 0.5V Ob. -0.5V O c. 1V O d. OVarrow_forwardHW4: Problem 1. Using S8MCQ rectifier diodes (a real diode), design a bridge rectifier circuit to convert 120 V rms (60 Hz) to a DC voltage of Vp-10 V (maximum voltage) and ripple voltage of Vr=0.25 V when it delivers 0.25 A to a load. By designing, it means that you have to calculate the value for the capacitor and find what should be the ratio of the primary to secondary winding of the transformer. transformer ac line 120 V (rms). 60 Hz US Vi vi vi Diode rectifier my Filter Vo Loadarrow_forward4.18 At what forward voltage does a diode conduct a cur- rent equal to 10001? In terms of Is, what current flows in the same diode when its forward voltage is 0.7 V?arrow_forward
- Q4: Consider a Zener diode with a nominal voltage (10v @ 10mA) and a resistance of 50 ohm. Calculate the expected Zener voltage if the diode current is doubled?arrow_forwardQ4: Consider a Zener diode with a nominal voltage (10v @ 10mA) and a resistance of 50 ohm. Calculate the expected Zener voltage if the diode current is halved?arrow_forwardA half wave rectifier circuit with a 1K ohm load operates from a 120V rms 60-Hz household supply through a 10-to-1 step down transformer. It uses a silicon diode that can be modeled to have a 0.7V drop for any current. What is the peak voltage of the rectified output? For what fraction of a cycle does the diode conduct? What is the average output voltage? What is the average current in the load? Thanks for any help.arrow_forward
- Q5: Design a full-wave rectifier with 1kN load. The rectifier operates from A.C supply of 220v and 50HZ through 20-to-1 step down transformer having a center tapped secondary winding. What is the peak value of the rectified output across the load and the fraction of a cycle does each diode conduct? What is the PIV of the used diodes. The diodes can be modeled to have 0.75v voltage drop for any current.arrow_forwarduse a P-N junction ideal diode to simulate a circuit measure and plot its I-V characteristics as well as its forward characteristics. assume breakdown voltage of around 6V for your calculations. I have added my multisim design with IV graph of the diode. I need : the large signal piece wise linear parameters of the diode. and for the plot do the theoretical calculations for at least one point on the curve and mark it on the curve This peoblem has other part that I will send when the expert answered this part. Tnxarrow_forwardThe Single-phase HW Rectifiers with R, L with free while diode find the value of Voltage and Currents (output do and Root Mean Square) with all the proved, then sketch the curve from 0-2 on these axes (vs, VL, VD and it) explain its operation.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,