Introduction To Health Physics
5th Edition
ISBN: 9780071835275
Author: Johnson, Thomas E. (thomas Edward), Cember, Herman.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.23P
To determine
The time required for two isotopes to reach at equilibrium.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The radioactive isotope, 14 6 C does not occur naturally but it is found at constant rate by the action of cosmic rays on the atmosphere. It is taken up by plants and animals and deposited in the body structure along with natural carbon, but this process stops at death. The charcoal from the fire pit of an ancient camp has an activity due to 146C of 12.9 disintegrations per minute, per gram of carbon. If the percentage of 146C compared with normal Carbon in living trees is 1.35 × 10−10%, the decay constant is 3.92 × 10−10 s−1 and the atomic weight = 12.0, what is the age of the campsite?
The rubidium isotope 8Rb is a ß emitter with
a half life of 4.9 × 1010 y .
It is used to determine the age of rocks and
fossils. Rocks containing the fossils of early
animals contain a ratio of Sr to
Assuming that there was no
when the rocks were formed, calculate the age
of these fossils.
Answer in units of y.
that decays into 87Sr.
87 Rb of 0.02.
87 Sr present
(a) What is the ratio of the radii of the nuclei Ni-58 and N-15?
(b) What is the ratio of the densities of these nuclei?
OA: 1.570 OB: 1.836 OC: 2.149 OD: 2.514 OE: 2.941 OF: 3.441 OG: 4.026 OH: 4.711
OA: 0.2 OB: 0.3 OC: 0.3 OD: 0.4 OE: 0.5 OF: 0.6 OG: 0.8 OH: 1.0
Chapter 4 Solutions
Introduction To Health Physics
Ch. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - If we start with 5 mg of 210Pb , what would be the...Ch. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - For use in carcinogenesis studies, benzo(a)pyrene...
Ch. 4 - Prob. 4.11PCh. 4 - Calculate the number of beta particles emitted per...Ch. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - How much 234U is there in 1 metric ton of the...Ch. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - The mean concentration of potassium in crustal...Ch. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - What is the (a) half-life? (b) mean life (in...Ch. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Unreasonable Results The relatively scarce naturally occurring calcium isotope 48Ca has a halflife at about 21016y. (a) A small sample of this isotope is labeled as having an activity of 1.0 Ci. What is the mass of the 48Ca in the sample? (b) What is unreasonable about this result? (c) What assumption is responsible?arrow_forwardData from the appendices and the periodic table may be needed for these problems. Unreasonable Results (a) Repeat Exercise 31.57 but include the 0.0055% natural abundance of 234U with its 2.45105y halflife. (b) What is unreasonable about this result? (c) What assumption is responsible? (d) Where does the 234U come from if it is not primordial?arrow_forwardNo stable nuclides exist that have Z greater than ___. (10.3)arrow_forward
- Neutrons from a source (perhaps the one discussed in the preceding problem) bombard natural molybdenum, which is 24 percent 98Mo. What is the energy output of the reaction 98Mo+n99Mo+ ? The mass of 98MB is given in Appendix A: Atomic Masses, and that of 99Mo is 98.907711 u.arrow_forward(a) Calculate the number of grams of deuterium in an 80.000L swimming pool, given deuterium is 0.0150% of natural hydrogen. (b) Find the energy released in joules if this deuterium is fused via the reaction 2H+2H3He+n. (c) Could the neutrons be used to create more energy? (d) Discuss the amount of this type of energy in a swimming pool as compared to that in, say, a gallon of gasoline, also taking into consideration that water is far more abundant.arrow_forwardTo obtain the most precise value of BE from the equation BE=[ZM(1H)+Nmn]c2m(AX)c2, we should take into account the binding energy of the electrons in the neutral atoms. Will doing this produce a larger or smaller value for BE? Why is this effect usually negligible?arrow_forward
- (a) Calculate BE/A for 235U, the rarer of the two most common uranium isotopes. (b) Calculate BE/A for 238U. (Most of uranium is 238U.) Note that 238U has even numbers at both protons and neutrons. Is the BE/A of 238U significantly different from that of 235U?arrow_forward(a) Calculate the radius of 58Ni, one of the most tightly bound stable nuclei. (b) What is the ratio of the radius of 58Ni to that at 258Ha, one of the largest nuclei ever made? Note that the radius of the largest nucleus is still much smaller than ?le size of an atom.arrow_forwardThe atomic weight of cadmium is 112.41, and its density is 8.65 g/cm3. Using Figure 14.3, estimate the attenuation distance of a thermal neutron beam in cadmium. (The attenuation distance is the distance traveled after which the intensity of the beam is reduced to 1/e of its initial value, where e is the base of the natural logarithms.)arrow_forward
- (a) Show that if you assume the average nucleus is spherical with a radius r=r0A1/3, and with a mass at A u, then its density is independent at A. (b) Calculate that density in u/fm3 and kg/m3, and compare your results with those found in Example 31.1 for 56Fe.arrow_forwardWhat is the mass of 60Co in a cancer therapy transillumination unit containing 5.00 kCi of 60Co?arrow_forward(a) Write the complete reaction equation for electron capture by 15. (b) Calculate the energy released.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning