Applied Fluid Mechanics (7th Edition)
7th Edition
ISBN: 9780132558921
Author: Robert L. Mott, Joseph A. Untener
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 4.13PP
An observation port in a small submarine is located in a horizontal surface of the sub. The shape of the port is shown in Fig. 4.25 Compute the total force acting on the port when the pressure inside the sub is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If the wall in Fig. 4.29 is 4 m long, calculate the total force on the wall due to the oil pressure. Also determine the location of the center of pressure and show the resultant force on the wall.
complete solution with illustration, thanks.
The tank shown in Fig. (1) is divided into two independent chambers. Air pressure is present in both sections. A manometer measures the difference between these pressures. A sphere oi wood (s. = 0.6) is fastened into the wall as shown. a- Compute the magnitude of the resultant of horizontal forces on the sphere. b- Compute the magnitude of the resultant of vertical forces on the sphere. Note : volume of sphere is (n D^3/ 6)
Chapter 4 Solutions
Applied Fluid Mechanics (7th Edition)
Ch. 4 - figure 4.2 shows a vacuum tank with a flat...Ch. 4 - The flat left end of the tank shown in Fig. 4.21...Ch. 4 - An exhaust system for a room creates a partial...Ch. 4 - A piece of 14 -in Schedule 40 pipe is used as a...Ch. 4 - A pressure relief valve is designed so that the...Ch. 4 - A gas-powered cannon shoots projectiles by...Ch. 4 - The egress hatch of a manned spacecraft is...Ch. 4 - A tank containing liquid ammonia at 77F has a flat...Ch. 4 - The bottom of a laboratory vat has a hole in it to...Ch. 4 - A simple shower for remote locations is designed...
Ch. 4 - Calculate the total force on the bottom of the...Ch. 4 - If the length of the tank in Fig. 4.24 is 1.2m,...Ch. 4 - An observation port in a small submarine is...Ch. 4 - A rectangular gate is installed in a vertical wall...Ch. 4 - '4.15 A vat has a sloped side, as shown in Fig....Ch. 4 - The wall shown in Fig. 4.28 is 20 ft long, (a)...Ch. 4 - If the wall in Fig. 4.29 is 4m long, calculate the...Ch. 4 - Refer to Fig. 4.30Ch. 4 - Refer to Fig. 4.31Ch. 4 - Refer to Fig.4.32Ch. 4 - Refer to Fig 4.33Ch. 4 - Refer to Fig. 4.34Ch. 4 - Refer to Fig. 4.35 (?Ch. 4 - Swimming poo!WilierGlasswindow2 ft diameterFigure...Ch. 4 - 4.25 Refer to Fig 4.37Ch. 4 - Refer to Fig.4.38Ch. 4 - Refer to Fig.4.39Ch. 4 - Refer to Fig.4.40Ch. 4 - Refer to Fig 4.41Ch. 4 - figure 4.42i5 shows a gasoline tank filled into...Ch. 4 - If the tank in Fig. 4.42 is filled just to the...Ch. 4 - If the tank in Fig. 4.42 is only half full of...Ch. 4 - For the water tank shown in Fig. 4.43, compute the...Ch. 4 - For the water tank shown in Fig. 4.43, compute the...Ch. 4 - For the water tank shown in Fig. 4.43, compute the...Ch. 4 - For the orange-drink tank shown in Fig. 4.32,...Ch. 4 - For the orange-drink tank shown in Fig. 4.32,...Ch. 4 - For the oil tank shown in Fig. 4.35, compute the...Ch. 4 - For the oil tank shown in Fig. 4.35; compute the...Ch. 4 - figure 4.44 shows a rectangular gate holding water...Ch. 4 - figure 4.45 shows a gate hinged at its bottom and...Ch. 4 - figure 4.46 shows a tank of water with a circular...Ch. 4 - Repeat Problem 4.19(Fig. 4.31), except that the...Ch. 4 - Repeat Problem 4.22 (Fig. 4.32), except that the...Ch. 4 - Repeat Problem 4.26 (Fig. 4.38 ). except that the...Ch. 4 - Repeat Problem 4.28 (Fig. 4.40 ), except that the...Ch. 4 - Use Fig 4.47. The surface is 2.00m long.Ch. 4 - Use Fig.4.48. The surface is 2.50m long.Ch. 4 - Use Fig.4.49. The surface is 5.00 ft longCh. 4 - Use Fig.4.50. The surface is 4.50 ft long.Ch. 4 - Use Fig.4.51.The surface is 4.00 m long.Ch. 4 - Use Fig .4.52. The surface is 1.50m longCh. 4 - Use Fig. 4.53. The surface is 1.50m long.Ch. 4 - Use Fig. 4.54. The surface is 60 in longCh. 4 - Repeat Problem 4.47 using Fig. 4.47, except that...Ch. 4 - Repeat Problem 4.48 using Fig. 4.48, except that...Ch. 4 - The tank in Fig. 4.55 has a view port in the...Ch. 4 - Insulated concrete forms (ICFs) are becoming more...Ch. 4 - Lacks are installed in rivers to allow boats to...Ch. 4 - When a dam is installed in a river that has...Ch. 4 - A wealthy eccentric is interested in having an...Ch. 4 - A pneumatic cylinder like the one shown in Fig....Ch. 4 - Determine the magnitude and the location of the...Ch. 4 - For the hinged gate shown in Fig. 4.61, determine...Ch. 4 - Prob. 4.65PPCh. 4 - Write a program to solve Problem 4.41 with any...Ch. 4 - Write a program to solve Problem 4.42 (Fig. 4.46)...Ch. 4 - Write a program to solve curved surface problems...Ch. 4 - For Program 1, cause the depth h to vary over some...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
The solid steel shaft AC has a diameter of 25 mm and is supported by smooth bearings at D and E. It is coupled ...
Mechanics of Materials (10th Edition)
How is the hydrodynamic entry length defined for flow in a pipe? Is the entry length longer in laminar or turbu...
Fluid Mechanics: Fundamentals and Applications
A nozzle at A discharges water with an initial velocity of 36 ft/s at an angle with the horizontal. Determine ...
Vector Mechanics For Engineers
How does a computers main memory differ from its auxiliary memory?
Java: An Introduction to Problem Solving and Programming (8th Edition)
What output will the following lines of code display on the screen? cout "The works of Wolfgang\ninclude the f...
Starting Out with C++: Early Objects (9th Edition)
Look at the following description of a problem domain:
Starting Out with Java: From Control Structures through Data Structures (4th Edition) (What's New in Computer Science)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 4. Calculate the pressure difference between the inside and outside of a water droplet with a diameter of 1/16 in at 70 °F. Hint: use the surface tension value in Appendix B of the book.arrow_forwardA rectangular plate 3 m x 2 m is immersed horizontal inside a liquid of specific gravity 1.2. Calculate the total pressure on the plate, if it is immersed at a distance of 2 m from fluid surface level.arrow_forwardForce due to Liquid PressureProblem 3: A gate is in the form of letter T with the vertical 2 ft wide and 4 ft high. The horizontal crosspiece is 6 ft long and 1 ft high. Find the force on one side if the gate is submerged vertically with the top of the crosspiece along the surface of waterarrow_forward
- a drum has gasoline s.g=0.9, with oil s.g=0.8 and sea water s.g=1.03. the depth of the liquid is 0.8m, 0.5m, and 1.0 for gasoline, oil and sea water.1. find absolute pressure at depth 1.2m 2.find the depth at 1.8m 3. find the force F at depth 2.1m when diameter of drum is 0.5marrow_forwardA droplet having a diameter of 0.0762 mm if it is equivalent to an air-water interface giving a surface tension of 0.0730 N/m. a. What is the difference in pressure between the inside and outside of a droplet in N/m²? b. Compute the pressure in kPa. c. Compute the force due to surface tension in N.arrow_forwardDiagram of the problem, necessary formulas, clearance and numerical solution Calculate the pressure supported by the walls of a submarine when it is submerged at 350 m depth. What will be the force acting on a hatch if it is shaped round and 15 cm in diameter?arrow_forward
- 1. In the set-up shown, a rectangular gate, ABCD, is used to store layers of oil and water. The weight of the gate is 4 kN and the force exerted by the stopper on the gate is measured to be 80 kN. Sketch the pressure diagram on the rectangular gate. No need to put the expressions for pressures. Draw the free body diagram of the rectangular gate. Label all external forces. Calculate the moment done by the resultant hydrostatic force about the hinge. What is the pressure on the oil-water interface? Determine the weight of the block. Pressurized air Block 0.5 m ...... Oil, SG = 0.8 1 m ...... 0.8 m Water Hinge 1.2 SG = 1.26 2.4 m 130 degrees stopper 2 marrow_forward1. ATectangular plate 1 m wide by 2 m long is immersed in water of density 1000 kg/m3. The shorter side is parallel to the water surface and 0.5 m below it. The longer side is inclined at 60° to the vertical. Calculate the magnitude, direction and location of the force acting on one side of the plate due to water pressure.arrow_forward2) The gauge pressure oi a gas inside a container is 200 kPa. Calculate the vertical height of manometer fluid that can be supported by this gas pressure if the fluid is oil with a specific gravity of 0.95arrow_forward
- The shown figure represents a tank filled with water and closed at its top with gate AB and connected with a manometer at its bottom. The gate can be rotated about the hinge at A. Compute the minimum height (y). of mercury_(Hg) in the manometer that is required to cause the gate just starts to open. Assume: Specific gravity of Hg=13.6, Mass density of the gate= 2500 kg/m3. Material of the gate is homogenous. Gate width is 1.0 m, and gate thickness is 2.0 cm. Hinge. LA 1000 N.m r=0.5m water B y Hg 0.25m 0.25m, 0.5marrow_forwardHi, can you please answer quickly. I appreciate your assistance.arrow_forwardCompute the height of oil column if density of oil is 900 km/m3, density of water is 1000 kg/m3 and the difference in levels between points A and B of 10 cm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY