Physics Laboratory Experiments
8th Edition
ISBN: 9781285738567
Author: Jerry D. Wilson, Cecilia A. Hernández-Hall
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 3Q
To determine
Whether the air resistance or friction a systematic or a random source of error, and whether it cause the period to be larger or smaller.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The quantities A and φ (called the amplitude and the phase) are undetermined by the differential equation. They are determined by initial conditions -- specifically, the initial position and the initial velocity -- usually at t = 0, but sometimes at another time.
In the oscillating part of the experiment, I measured only the time of 30 periods. I measured no position or velocity. Consequently, A and φ (and also y0) are irrelevant in the problem. We only compare the period T or the frequency ω with the theoretical prediction. You have (hopefully) derived (or maybe looked up) the relation between ω and k and m.
This final question relates ω and T. If ω = 8.2*102 rad/s, calculate T in seconds. (Remember, that a radian equals one.) T might be a fraction of a second.
part A and B
Please answer the correctly and clearly
Chapter 4 Solutions
Physics Laboratory Experiments
Ch. 4 - Scientists use models and theories to describe...Ch. 4 - Prob. 2EPCh. 4 - Prob. 3EPCh. 4 - The mass (m) of the pendulum bob may be varied....Ch. 4 - Check with one of your fellow students (or your...Ch. 4 - Describe what is meant by the scientific method...Ch. 4 - What are the physical parameters in the...Ch. 4 - Prob. 3ASACh. 4 - How does the period of a pendulum vary...Ch. 4 - How will you experimentally check the theoretical...
Ch. 4 - Prob. 6ASACh. 4 - How can the parabolic form y = ax2 be plotted as a...Ch. 4 - What is meant by damped harmonic motion, and what...Ch. 4 - It was suggested that you measure the time for...Ch. 4 - Prob. 2QCh. 4 - Prob. 3QCh. 4 - Prob. 4QCh. 4 - Prob. 5QCh. 4 - Suppose in the damped equation had ek1t and ek2t,...Ch. 4 - Prob. 7Q
Knowledge Booster
Similar questions
- Consider a mass and spring system with mass m = 3 and spring constant k = 75, and damping constant c. What would the frequency of oscillation be if there were no damping at all (c = 0)? What is the critical value of the damping constant c that separates oscillatory from non-oscillatory motion? If c = 25, is the system underdamped, overdamped, or neither?arrow_forwardPlease answer this. I will surely upvote!!!arrow_forwardThe student discovers that for the modeling of the BMMD, it is possible to use the ideal mass-spring system, so the student makes use of the computational simulation masses and springs (https://phet.colorado.edu/sims/html/masses-and-springs/latest/masses-and-springs_en.html) to establish the relationships between the relevant physical variables of the device. Answer the following questions from the use of the computational simulation in the Lab section, adapt to the conditions of space (zero gravity and zero damping). What happens to the period and frequency of oscillation (do they increase, decrease or remain the same) when increasingly larger masses are measured? Justify What happens to the period if the amplitude of the motion is varied? Justify.arrow_forward
- Note: Because the argument of the trigonometric functions in this problem will be unitless, your calculator must be in radian mode if you use it to evaluate any trigonometric functions. You will likely need to switch your calculator back into degree mode after this problem.A massless spring is hanging vertically. With no load on the spring, it has a length of 0.24 m. When a mass of 0.59 kg is hung on it, the equilibrium length is 0.98 m. At t=0, the mass (which is at the equilibrium point) is given a velocity of 4.84 m/s downward. At t=0.32s, what is the acceleration of the mass? (Positive for upward acceleration, negative for downward)arrow_forwardConsider a harmonic oscillator at four different moments, labeled A, B, C, and D, as shown in the figure (Figure 1). Assume that the force constant k�, the mass of the block, m�, and the amplitude of vibrations, A�, are given. Answer the following questions.arrow_forwardPlease Answer this. I will surely upvote!!!arrow_forward
- Problem 5: Consider a 1D simple harmonic oscillator (without damping). (a) Compute the time averages of the kinetic and potential energies over one cycle, and show that they are equal. Why does this make sense? (b) Show that the space averages of the kinetic and potential energies are (T)₂ = k1² KA² and (U),= KA². Why is this a reasonable result?arrow_forwardplease show on paperarrow_forwardConsider a non-rotating circular thin disc of gas of radius R. The only forces present in the system are pressure forces within the disc and its self-gravity. The disc is surrounded by empty space. In the disc is present a surface density perturbation of the type 01 = 010e (wt-kr) where σ10 is the amplitude of the perturbation, t represents time, r the radial coordi- nate from the centre of the disc, w is the angular frequency of the perturbation and k its wavenumber. Under the influence of the above perturbation, the linear stability of the disc is determined by the following dispersion relation w² = u²k² - 2πGook, where u is the sound speed in the disc, σ the surface density of the disc, and G is the gravitational constant. 1. Using the dispersion relation and appropriate definitions derive an expression of the group velocity of the small perturbations as a function of u, σo and their wavelength. 2. State the criterion for the disc to be stable and then show that the disc is stable…arrow_forward
- Problem 3: The motion of critically damped and overdamped oscillator systems is hardly "oscillatory". (a) To illustrate this, prove that a critically damped oscillator passes through the originx = 0 at most once, and determine the relationship between the initial conditions To and vo that is required for the oscillator to pass through the origin. (b) Do the same thing for the overdamped oscillator.arrow_forwardShow the complete solutionarrow_forwardConsider the setup shown below: a block with mass m, sits on a table with friction coefficient u between the table and itself, attached on one side to a spring with stiffness k, and on the other side to a cord with negligible mass that wraps over a frictionless pully and supports a second block with mass m; that's suspended in the air over the edge of the table. If the friction between block 1 and the table is not enough to hold up block 2 (so that the spring has to stretch), how far is the spring stretched when the system comes to rest? k m1 m2 Ax =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON