Stars and Galaxies
9th Edition
ISBN: 9781305120785
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 3P
To determine
The duration of one retrograde cycle and fraction of retrograde cycle to mars’s orbital period.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
On the evening of an autumnal equinox day Siddhant noticed that Mars was
exactly along the north-south meridian in his sky at the exact moment when the sun was
setting. In other words, the Sun and Mars subtended an angle of exactly 90° as measured
from the Earth. If the orbital radius of Mars is 1.52 au, What will be the approximate rise
time of the mars on the next autumnal equinox day?
The average distance between Mars and the Sun is 1.52 AU. What is the orbital period of Mars? Provide you answer in time units of years.
Like all planets, the planet Venus orbits the Sun in periodic motion and simultaneously spins about its axis. Just as on Earth, the time to make one complete orbit (i.e., the period of orbit) is what defines a year. And the time to make one complete revolution about its axis (i.e., the period of rotation) is what defines a day. The period of orbit for the Earth is 365.25 days and the period of rotation is 24 hours (1.00 day). But when these same values for Venus are expressed relative to Earth, it is found that Venus has a period of orbit of 225 days and a period of rotation of 243 days. So for Venus inhabitants, a day would last longer than a year! Determine the frequency of orbit and the frequency of rotation (in Hertz) on Venus.
Chapter 4 Solutions
Stars and Galaxies
Ch. 4 - Prob. 1RQCh. 4 - Prob. 2RQCh. 4 - Prob. 3RQCh. 4 - Prob. 4RQCh. 4 - Prob. 5RQCh. 4 - Prob. 6RQCh. 4 - Which two-dimensional (2D) and three-dimensional...Ch. 4 - Prob. 8RQCh. 4 - Prob. 9RQCh. 4 - Prob. 11RQ
Ch. 4 - Prob. 12RQCh. 4 - Prob. 13RQCh. 4 - Prob. 14RQCh. 4 - Prob. 16RQCh. 4 - Prob. 17RQCh. 4 - Prob. 18RQCh. 4 - Prob. 19RQCh. 4 - Prob. 20RQCh. 4 - Prob. 21RQCh. 4 - Prob. 22RQCh. 4 - How did the Alfonsine Tables, the Prutenic Tables,...Ch. 4 - Prob. 24RQCh. 4 - Prob. 25RQCh. 4 - Prob. 26RQCh. 4 - Prob. 27RQCh. 4 - Draw and label a diagram of the western horizon...Ch. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - One planet is three times farther from the Sun...Ch. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 1LLCh. 4 - Prob. 2LLCh. 4 - What three astronomical objects are represented...Ch. 4 - Prob. 4LL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A)At what altitude would a geostationary sattelite need to be above the surface of Mars? Assume the mass of Mars is 6.39 x 1023 kg, the length of a martian solar day is 24 hours 39minutes 35seconds, the length of the sidereal day is 24hours 37minutes 22seconds, and the equatorial radius is 3396 km. The answer can be calculated using Newton's verison of Kepler's third law.arrow_forwardIf the satellite was placed in an orbit three times farther away, about how long would it take to orbit the Earth once? Answer in days, rounding to one significant figure.days Mars rotates on its axis once every 1.02 days (almost the same as Earth does). (a) Find the distance from Mars at which a satellite would remain in one spot over the Martian surface. (Use 6.42 1023 kg for the mass of Mars.)m(b) Find the speed of the satellite.m/sarrow_forwardScientist once hypothesized the existence of a planet called vulcan to explain Mercury's precession. Vulcan is supposed to be between mercury and the sun with a solar distance equal to 2/3;of that mercury. What would be its supposed periodarrow_forward
- The average orbital distance of Mars is 1.52 times the average orbital distance of the Earth. Knowing that the Earth orbits the sun in approximately 365 days, use Kepler's law of harmonies to predict the time for Mars to orbit the sun.arrow_forwardAssume that the planet's orbit is circular of radius R = 130 × 106 km and planet's period is T = 30 × 10° s. What is the magnitude of the vector J = r x r' (in units of square kilometers per second)? (Use decimal notation. Give your answer to three decimal places.) ||J|| = x10° km²/s Find the rate at which the planet's radial vector sweeps out area in units of square kilometers per second. (Use decimal notation. Give your answer to three decimal places.) dA x10° km²/s dtarrow_forwardAs an aspiring science fiction author, you are writing about a space-faring race and their home planet, Krypton, which has one moon. This moon takes 1,702,948 seconds to complete an orbit around Krypton. If the distance from the center of the moon to the surface of Krypton is 462.5 x 106 m and the planet has a radius of 37.2 x 106 m, calculate the moon's centripetal acceleration. Your Answer: Answerarrow_forward
- The Halley’s Comet regularly passes by the earth on its tour around the sun (at the time of Jesus’ birth itwas something different, most probably). The semi-major axis of the elliptical path is 17.8 AU(astronomical unit = 150·109 m). Halley’s last visit at our earth was in 1985. Are you going to experience the next visit?arrow_forwardThe earth revolves around the sun in exactly 365 1/4 days which is equivalent to 1 year. To make up for the loss of 1/4 day, the calendar was adjusted so that we have a leap year for every 4 years. If the earth were to speed in its motion slightly so that a year would be completed in exactly 365 days and 6 hours, how often would we need to have a leap year?arrow_forwardWhat is the difference between prograde rotation and retrograde rotation?arrow_forward
- If G = 6.674 ⨉ 10 −11m3/kg/s 2and M Earth= 5.972 ⨉ 10 24kg and the sidereal period of the Earth is 27.32 days, then, from Kepler’s third law in #4, what is the expected orbital distance of the Moon?arrow_forwardTo model a moon in the solar system, consider a sphere with radius R and uniform mass density p. Let gm = the acceleration due to gravity on the surface of the sphere. Calculate gm for these values of R and p: R = 2.0×106 m; p= 2.7x103 kg/m^3; (in m/s^2) OA: OB: 1.509 2.007 OC: 2.669 OD: 3.549 OE: OF: 4.721 6.279 OG: 8.351 OH: 1.111x101arrow_forwardThe semimajor axis of Mars orbit is about 1.52 astronomical units (au), where an au is the Earth's average distance from the Sun, meaning the semimajor axis of Earth's orbit is 1 au. To go from Earth to Mars and use the least energy from rocket fuel, the orbit has a semimajor axis of 1.26 au and an eccentricity of about 0.21. Starting at Earth's orbit, to follow this path we give the spacecraft an orbital velocity of 40 km/s. Which of the following describes this best? a. It arrives at Mars orbit at the same moment that Mars is there, and must speed up to go into an orbit next to Mars or else drop back into perihelion (closest to the Sun) at Earth's orbit. b. It arrives at Mars orbit at the same moment that Mars is there, and must slow down to go into an orbit next to Mars or else drop back into perihelion (closest to the Sun) at Earth's orbit. c. It flys past Mars on its trajectory unless it is braked by accelerating toward the Sun. It which leaves Earth when Mars is nearly…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY