Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 87PQ
(a)
To determine
The angle of refraction of the ray of light in water.
(b)
To determine
The wavelength of the ray of light in water.
(c)
To determine
The difference in the behavior of sound waves and light waves during refraction and compare it to the corresponding parts of Problem 86PQ.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Light of wavelength 541 nm is incident from air (n = 1) to glass (n = 1.51). A). What is the wavelength of the light in glass? B). If the angle of incidence is 37°, What is the angle of refraction? C. If the angle of refraction is 39.80°, at what angle did the light touch the glass surface?
A beam of light traveling through a liquid (of index of refraction n1 = 1.4) is incident on a surface at an angle of θ1 = 45° with respect to the normal to the surface. It passes into the second medium and refracts at an angle of θ2 = 69.5° with respect to the normal.
A. What is the index of refraction of the second material?
B. What is the light's velocity in medium 1, in meters per second?
C. What is the light's velocity in medium 2, in meters per second?
An incident wave of light travels through glass (n = 1.5) to water (n = 1.33) at an
angle of 35°.
a. What is the angle of reflection and refraction?
b. What is the critical angle for this system?
c. What is the speed of light in these two materials?
Chapter 38 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 38.1 - Light travels from air into glass. Which sketch in...Ch. 38.2 - Prob. 38.2CECh. 38.3 - Prob. 38.3CECh. 38.6 - Prob. 38.4CECh. 38.7 - Prob. 38.5CECh. 38.9 - Prob. 38.6CECh. 38.9 - Prob. 38.7CECh. 38.10 - Prob. 38.8CECh. 38 - The Sun appears at an angle of 53.0 above the...Ch. 38 - Prob. 2PQ
Ch. 38 - Prob. 3PQCh. 38 - A light ray is incident on an interface between...Ch. 38 - Prob. 5PQCh. 38 - Prob. 6PQCh. 38 - Prob. 7PQCh. 38 - A ray of light enters a liquid from air. If the...Ch. 38 - Prob. 9PQCh. 38 - Figure P38.10 on the next page shows a...Ch. 38 - Prob. 11PQCh. 38 - Prob. 12PQCh. 38 - Prob. 13PQCh. 38 - Prob. 14PQCh. 38 - Prob. 15PQCh. 38 - A fish is 3.25 m below the surface of still water...Ch. 38 - N A fish is 3.25 m below the surface of still...Ch. 38 - A beam of monochromatic light within a fiber optic...Ch. 38 - Prob. 19PQCh. 38 - Prob. 20PQCh. 38 - Consider a light ray that enters a pane of glass...Ch. 38 - Prob. 22PQCh. 38 - Prob. 23PQCh. 38 - Prob. 24PQCh. 38 - Prob. 25PQCh. 38 - Prob. 26PQCh. 38 - Prob. 27PQCh. 38 - Prob. 28PQCh. 38 - The wavelength of light changes when it passes...Ch. 38 - Prob. 30PQCh. 38 - Light is incident on a prism as shown in Figure...Ch. 38 - Prob. 32PQCh. 38 - Prob. 33PQCh. 38 - Prob. 34PQCh. 38 - Prob. 35PQCh. 38 - Prob. 36PQCh. 38 - Prob. 37PQCh. 38 - A Lucite slab (n = 1.485) 5.00 cm in thickness...Ch. 38 - Prob. 39PQCh. 38 - Prob. 40PQCh. 38 - The end of a solid glass rod of refractive index...Ch. 38 - Prob. 42PQCh. 38 - Figure P38.43 shows a concave meniscus lens. If...Ch. 38 - Show that the magnification of a thin lens is...Ch. 38 - Prob. 45PQCh. 38 - Prob. 46PQCh. 38 - Prob. 47PQCh. 38 - The radius of curvature of the left-hand face of a...Ch. 38 - Prob. 49PQCh. 38 - Prob. 50PQCh. 38 - Prob. 51PQCh. 38 - Prob. 52PQCh. 38 - Prob. 53PQCh. 38 - Prob. 54PQCh. 38 - Prob. 55PQCh. 38 - Prob. 56PQCh. 38 - Prob. 57PQCh. 38 - Prob. 58PQCh. 38 - Prob. 59PQCh. 38 - Prob. 60PQCh. 38 - Prob. 61PQCh. 38 - Prob. 62PQCh. 38 - Prob. 63PQCh. 38 - Prob. 64PQCh. 38 - Prob. 65PQCh. 38 - Prob. 66PQCh. 38 - Prob. 67PQCh. 38 - Prob. 68PQCh. 38 - CASE STUDY Susan wears corrective lenses. The...Ch. 38 - A Fill in the missing entries in Table P38.70....Ch. 38 - Prob. 71PQCh. 38 - Prob. 72PQCh. 38 - Prob. 73PQCh. 38 - Prob. 74PQCh. 38 - An object 2.50 cm tall is 15.0 cm in front of a...Ch. 38 - Figure P38.76 shows an object placed a distance...Ch. 38 - Prob. 77PQCh. 38 - Prob. 78PQCh. 38 - Prob. 79PQCh. 38 - CASE STUDY A group of students is given two...Ch. 38 - A group of students is given two converging...Ch. 38 - Prob. 82PQCh. 38 - Two lenses are placed along the x axis, with a...Ch. 38 - Prob. 84PQCh. 38 - Prob. 85PQCh. 38 - Prob. 86PQCh. 38 - Prob. 87PQCh. 38 - Prob. 88PQCh. 38 - Prob. 89PQCh. 38 - Prob. 90PQCh. 38 - Prob. 91PQCh. 38 - Prob. 92PQCh. 38 - Prob. 93PQCh. 38 - Prob. 94PQCh. 38 - Prob. 95PQCh. 38 - Prob. 96PQCh. 38 - Prob. 97PQCh. 38 - A Fermats principle of least time for refraction....Ch. 38 - Prob. 99PQCh. 38 - Prob. 100PQCh. 38 - Prob. 101PQCh. 38 - Prob. 102PQCh. 38 - Prob. 103PQCh. 38 - Prob. 104PQCh. 38 - Curved glassair interfaces like those observed in...Ch. 38 - Prob. 106PQCh. 38 - Prob. 107PQCh. 38 - Prob. 108PQCh. 38 - Prob. 109PQCh. 38 - Prob. 110PQCh. 38 - Prob. 111PQCh. 38 - Prob. 112PQCh. 38 - Prob. 113PQCh. 38 - Prob. 114PQCh. 38 - The magnification of an upright image that is 34.0...Ch. 38 - Prob. 116PQCh. 38 - Prob. 117PQCh. 38 - Prob. 118PQCh. 38 - Prob. 119PQCh. 38 - Prob. 120PQCh. 38 - Prob. 121PQCh. 38 - Prob. 122PQCh. 38 - Prob. 123PQCh. 38 - Prob. 124PQCh. 38 - Prob. 125PQCh. 38 - Prob. 126PQCh. 38 - Light enters a prism of crown glass and refracts...Ch. 38 - Prob. 128PQCh. 38 - An object is placed a distance of 10.0 cm to the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A light ray travels from vacuum into a slab of material with index of refraction n1 at incident angle θ with respect to the surface. It subsequently passes into a second slab of material with index of refraction n2 before passing back into vacuum again. The surfaces of the different materials are all parallel to one another. As the light exits the second slab, what can be said of the final angle ϕ that the outgoing light makes with the normal? (a) ϕ > θ (b) ϕ < θ (c) ϕ = θ (d) The angle depends on the magnitudes of n1 and n2. (e) The angle depends on the wavelength of the light.arrow_forward(a) What is the ratio of the speed of red light to violet light in diamond, based on Table 1.2? (b) What is this ratio in polystyrene? (c) Which is more dispersive?arrow_forwardA light ray is incident on an interface between water (n = 1.333) and air (n = 1.0002926) from within the air. If the angle of incidence in the air is 30.0, what is the angle of the refracted ray in the water?arrow_forward
- Unreasonable results Suppose light travels from water to another substance, with an angle of incidence of 10.0and an angle of refraction of 14.9 . (a) What is the index of refraction of the other substance? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forwardFigure P38.10 on the next page shows a monochromatic beam of light of wavelength 575 nm incident on a slab of crown glass surrounded by air. Use a protractor to measure the angles of incidence and refraction. a. What is the speed of the beam of light within the glass slab? b. What is the frequency of the beam of light within the glass slab? c. What is the wavelength of the beam of light within the glass slab? FIGURE P38.10arrow_forwardThe Sun appears at an angle of 53.0 above the horizontal as viewed by a dolphin swimming underwater. What angle does the sunlight striking the water actually make with the horizon?arrow_forward
- a. At what angle will light moving from glass (ng=1.5) to air be completely linearly polarized upon reflection? Describe the orientation of the polarization. b. At what incident angle(s) will light moving from glass to air undergo Total Internal Reflection? c. A beam of light having an irradiance of 100 W/m² is incident perpendicularly to the glass-air interface Calculate the reflected irradiance.arrow_forwardThe current that flows through a battery-powered flashlight, solar cells and fuel cells is called ____. A. AC B. DC C. LC D. RC A beam of white light goes from air into the water droplet at an incidence angle of 36.2 degrees. What is the angle between the red (660 nm) and violet (410 nm) parts of the refracted light?A. 20O B. 21O C. 22O D. 23O A magnetic field B= 0.6T is directed upward through a circular loop of diameter 7 cm and 500 turns. The loop is initiallyhorizontal, so it is perpendicular to the magnetic field. It rotates through a horizontal axis so that the plane of the loop is at 74° with the horizontal axis within 1 second. What is the magnitude of the induced emf? A. -18.18 V B. -15.3 V C. 16.4 V D. 17.6 V A electron passes through a magnetic field at 60 to the field at a velocity of 3.5 × 106?/?. What is the magnitude of the force acting on the electron having a 0.45 T magnetic field? A. 2. 18 × 10−10 ? C. 2. 18 × 10−12 ? B. 2. 18 × 10−11 ? D. 2. 18 × 10−13 ? A wire that…arrow_forwardA ray of sunlight traveling through water index of refraction is roughly 1.33 across the visible spectrum. Has an incident angle of 80° when it encounters a transparent aquarium wall with index of refraction n=1.2. There is air with index n=1 on the other side of the wall and the wall surfaces are parallel. Which statement below is true? a. Light emerges on the other side of the wall and is now completely polarized. b. The light enters into the transparent wall but is completely reflected at the second interface. c. Light emerges on the other side of the wall traveling parallel to the incident ray. d. The light is completely reflected at the first interface. e. Light emerges on the other side of the wall but different colors now travel in different directions.arrow_forward
- Need help, please.arrow_forwardA light ray traveling in air (1.00) with a wavelength of 589 nm is incident on Pyrex Glass (1.47) at an angle of 60.0 degrees to the normal, The speed of light is 3.00 x 108 m/s a. Find the angle of refraction of light on the Pyrex Glass b. Find the speed of light in Pyrex Glass c. Find the wavelength of light in Pyrex Glass d. Suppose the light reemerges into air. Find the angle at which the light reemerges. Show your work.arrow_forwardA light ray makes an angle a with the normal to a glass-water surface, as shown below. a. What is the minimum angle a for which the total internal reflection occurs at the glass-water interface? b. For what angle a is the reflected light totally polarized? What is the direction of the electric field in the reflected ray of light? Explain. c. Is the Brewster angle for red light the same as for green light? Explain. Glass # = 1.50 Water n = 1.33arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning