Concept explainers
BRAGG REFLECTION ON A DIFFERENT SCALE. A colloid consists of particles of one type of substance dispersed in another substance. Suspensions of electrically charged microspheres (microscopic spheres, such as polystyrene) in a liquid such as water can form a colloidal crystal when the microspheres arrange themselves in a regular repeating pattern under the influence of the electrostatic force. Colloidal crystals can selectively manipulate different wavelengths of visible light. Just as we can study crystal-line solids by using Bragg reflection of x rays, we can study colloidal crystals through Bragg scattering of visible light from the regular arrangement of charged microspheres. Because the light is traveling through a liquid when it experiences the path differences that lead to constructive interference, it is the wavelength in the liquid that determines the angles at which Bragg reflections are seen In one experiment, laser
(c) 650nm (d) 780nm.
36.71 When the light is passed through the bottom of the sample container, the interference maximum is observed to be at 41°; when it is passed through the top, the corresponding maximum is at 37°. What is the best explanation for this observation? (a) The microspheres are more tightly packed at the bottom, because they tend to settle in the suspension, (b) The microspheres are more tightly packed at the top, because they tend to float to the top of the suspension, (c) The increased pressure at the bottom makes the microspheres smaller there. (d)The maximum at the bottom corresponds to m = 2. whereas the maximum at the top corresponds to m = 1.
Want to see the full answer?
Check out a sample textbook solutionChapter 36 Solutions
University Physics (14th Edition)
- In each of the following situations, a wave passes through an opening in an absorbing wall. Rank the situations in order from the one in which the wave is best described by the ray approximation to the one ill which the wave coming through the opening spreads out most nearly equally in all directions in the hemisphere beyond the wall, (a) The sound of a low whistle at 1 kHz passes through a doorway 1 m wide, (b) Red light passes through the pupil of your eye. (c) Blue light passes through the pupil of your eye. (d) The wave broadcast by an AM radio station passes through a doorway 1 m wide, (e) An x-ray passes through the space between bones in your elbow Joint.arrow_forwardQ3/A/We wish to coat a glass surface with an appropriate dielectric layer to provide total transmission from air to the glass at a free-space wavelength of 570 nm. The glass has refractive index n3 = 1.45 . Determine the required index for the coating and its minimum thickness.arrow_forwardWhat is the thickness of the film of Cryolite (R.I.= 1.36) is coated on a glass surface (R.I.=1.55)to increase the transmission of the normally incident light of wavelength 5893 A.U. options a:- 2166 A.U. b:- 1083 A.U. c:- 541 A.U d:- 1200 A.U.arrow_forward
- Solar cells are an example of anti-reflective coatings. Let a silicon solar cell (n = 3.45) coated with a layer of silicon dioxide (n = 1.45). Calculate the minimum coating thickness that will minimize the reflection of the light with wavelength of 650 nm?arrow_forwardPotassium chloride (KCl) is an ionic solid with a crystalline structure whose planes are 0.314 nm apart. X-rays of wavelength 0.267 nm are used in a Bragg diffraction experiment to study the crystalline structure. At what angle with respect to the atomic planes in the crystal would you expect the first strong reflection to occur?arrow_forward3. a) Calculate the reflectance of a quarter-wave anti-reflecting film of magnesium fluoride (n = 1.35) coated on an optical glass surface of index 1.52. b) Calculate the peak reflectance of a high-reflecting multilayer film consisting of N = 4 stacks of coating materials with high-low refractive index (nH = 2.8 and n, = 1.4).arrow_forward
- 1. a. If a piece of glass (n = 1.5) is coated with a transparent plastic (n = 2.0), will there be a phase shift in either of the beams reflecting off the interfaces (air/plastic and plastic/glass)? How can you tell, without doing the experiment, whether or not there will be a phase shift in either beam? Be specific about what rays are reflecting off what materials. b. So what thickness or thicknesses give the maximum reflection? What thickness or thicknesses (hint: it's thicknesses) give the minimum reflection? Assume that a light of wavelength 500. nm is used, and you may leave the answer in nm. Yes, this is a choice between equations 35.17 and 35.18, but your answer to part a should be helpful in deciding which set.arrow_forwardA thin layer of liquid methylene iodide (n = 1.76) is sandwiched between two flat, parallel plates of glass (n = 1.42). What is the minimum thickness of the liquid layer if normally incident light with λ= 550 nm in air is to be strongly reflected? 63.0 nm 99.2 nm 78.1 nm 126.0 nmarrow_forwardA flat piece of glass is held stationary and horizontal above the highly polished, flat top end of a 10.0-cm-long vertical metal rod that has its lower end rigidly fixed. The thin film of air between the rod and glass is observed to be bright by reflected light when it is illuminated by light of wavelength 500 nm. As the temperature is slowly increased by 25.0°C, the film changes from bright to dark and back to bright 200 times. What is the coefficient of linear expansion of the metal?arrow_forward
- Solar cells—devices that generate electricity when exposed to sunlight—are often coated with a transparent, thin film of silicon monoxide (SiO, n = 1.45) to minimize reflective losses from the surface. Suppose a silicon solar cell (n = 3.5) is coated with a thin film of silicon monoxide for this purpose (as shown). Determine the minimum film thickness that produces the least reflection at a wavelength of 550 nm, near the center of the visible spectrum.arrow_forwardWavelengths of Visible Light Violet 400-450 nm Blue 450-495 nm Green 495-570 nm Yellow 570-590 nm Orange 590-620 nm Red 620-700 nm Solar cells are given antireflection coatings to maximize their efficiency. Consider a silicon solar cell (n = 3.50) coated with a layer of silicon dioxide (n = 1.45) that is 241 nm thick. According to the table above, which color of light will have minimum reflection?arrow_forwardA quarter-wave plate is made from a material whose indices of refraction for light of free-space wavelength Ao = 589 nm are n = 1.732 and n = 1.456. What is the minimum necessary thickness of the plate for this wavelength?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax