Concept explainers
The common property of electric charges with magnetic poles.
Answer to Problem 1A
The electric charges and the magnetic poles have the same property of attraction and repulsion.
Explanation of Solution
Introduction:
Electric charge is the measure of amount of electrons flow from one point to another. The region at each end of a magnet where the magnetic field is the strongest are termed as magnetic poles.
To compare both electric charges and magnetic poles, it can be concluded that they both have the same property of attraction and repulsion. Now, electric charges are of two kinds: positive and negative. Like charges repel each other but unlike charges attract each other. Similarly, magnetic poles are of two kinds: North Pole and South Pole. Unlike poles attract each other but like poles repel each other.
Conclusion:
The electric charges and the magnetic poles have the same property of attraction and repulsion.
Want to see more full solutions like this?
Chapter 36 Solutions
Conceptual Physics: The High School Physics Program
Additional Science Textbook Solutions
Introductory Chemistry (6th Edition)
Microbiology: An Introduction
Microbiology: An Introduction
Campbell Biology: Concepts & Connections (9th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Organic Chemistry (8th Edition)
- No chstgptarrow_forwardDraw free body diagram for Figure 1arrow_forwardThree Force vectors in the X-Y plane are A=20 N <80°, B=40 N <45°, and C= 30 N L-60° . 1. Find the resultant force in unit vector notation. the magnitude and the direction of the resultant force. The magnitude and the direction of the equilibrium force. 2. Find the same as question 1 above using the graphical method.arrow_forward
- I need help with this problem and an explanation for the solution described below. (University Physics 1: Thermodynamics)arrow_forwardAn astronomer discovered two planets, X and Y, orbiting a star. From the perspective of the astronomer, the planets orbit the star as depicted in the figures. Five years ago, the planets were in the position shown in figure (a), with X, Y, and the star in a straight line. Today, planet X is in the position shown in figure (b), having made an angular displacement of 90.0°. If the radii of their orbits are in the ratio 5:4, what is the angular displacement of Y? (Give your answer in revolutions.) a b 1/5 × Equate Newton's law of universal gravitation with his second law, noting that the force in this case is a centripetal force, and use the relationship among angular velocity, radius, and linear velocity. Solve for the angular velocity of planet Y, and calculate the angular displacement in revolutions. revolutionsarrow_forwardQ4. A red ball is placed at point A in the figure below: Second quadrant 3.0 m Third quadrant y First quadrant Fourth quadrant 2.0 m 3.0 m 1.0 m 1. How many images are seen by an observer at point O? 3 images can be seen 2. What are the (x,y) coordinates of the image in the first quadrant? 3. What are the (x,y)coordinates of the image in the second quadrant? 4. What are the (x,y) coordinates of the image in the fourth quadrant? Tarrow_forward
- Can you please solve a, b and c showing all steps and final answersarrow_forwardI need help with this problem and an explanation for the solution described below. (University Physics 1: Thermodynamics)arrow_forwardI need help with this problem and an explanation for the solution described below. (University Physics 1: Thermodynamics)arrow_forward
- A bird dives to catch a fish at 5.00 m/s. Biologists say this bird makes a noise at 115.000 Hz. Field biologists are on a stationary boat as the bird approaches them, and they measure the frequency of the bird's sound to be 116.668 Hz. What is the air temperature that day, in degrees Fahrenheit? Express your answer to 3 sig figs. Note: This calculation is very sensitive to rounding. Keep to at least 4 places after the decimal point during your calculations.arrow_forwardA eats of Softe Four adult polar bears, each of mass 440. kg, are adrift on an ice floe in the seawaters of the Arctic Ocean. The ice floe is a rectangular slab, 8.0 m long by 4.0 m wide. If the top of the ice floe is 2.00 m above the water line, how thick is the slab of ice? Express your answer to 3 sig figs in either centimeters or meters.arrow_forwardI need help with this problem and an explanation for the solution described below. (University Physics 1: Thermodynamics)arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON