Physics for Scientists and Engineers With Modern Physics
Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 35, Problem 66AP
To determine

The reason for the situation to be impossible.

Expert Solution & Answer
Check Mark

Answer to Problem 66AP

The given situation is impossible as the total number of reflection possible is 82, but it is given that 85 reflection has occurred.

Explanation of Solution

The following figure shows the entire path of the laser beam traveled through the slab.

Physics for Scientists and Engineers With Modern Physics, Chapter 35, Problem 66AP

Figure-(1)

Write the expression for critical angle.

    sinθc=n2n1θc=sin1(n2n1)                                                                                                        (I)

Here, θc is the critical angle and n1 and n2 are the refractive index of respective medium.

Write the expression for the index of refraction on the first face of the prism.

    sinisinr=n

Here, i is the angle of incidence, n is the index of refraction and r is the angle of refraction.

Rewrite the above equation for r.

    sinisinr=nsinr=sininr=sin1(sinin)                                                                                                  (II)

Consider figure (1).

The angle of incidence is,

    i=90°r                                                                                                                 (III)

Calculate the length AB.

    tan(i)=ABACAB=(tan(i))(AC)                                                                                              (IV)

The laser beam is hitting at the middle of the slab. Therefore the length AC is half of the thickness of the slab. That is AC=3.10mm2.

Half reflection is occurred at length AB, then total number of reflection is,

    (12)x=ABADx=AD2AB                                                                                                                (V)

Here, x is the total number of reflection.

Conclusion:

Substitute 1.48 for n1 and 1 for n2 in equation (I) to calculate θc.

    θc=sin1(11.48)=sin1(0.675)=42.51°

Substitute 1.48 for n and 50.0° for i in equation (II) to calculate r.

    r=sin1(sin50.0°1.48)=sin1(0.7661.48)=sin1(0.517)=31.17°

Substitute 31.17° for r in equation (III) to calculate i.

    i=90°31.17°=58.83°

Angle i is greater than the angle θc. Therefore, the ray will not escape the slab, and undergoes internal reflection.

Substitute 58.83° for i and 3.10mm2 for AC in equation (IV) to calculate AB.

    AB=(tan(58.83°))(3.10mm2)(1×103m1mm)=(1.65)(3.10×103m2)=(1.65)(1.55×103m)=2.56×103m

Substitute 2.56×103m for AB and 42.0cm for AD in equation (V) to calculate x.

    x=(42.0cm)(1×102m1cm)2(2.56×103m)=(42.0×102m)(5.12×103m)=82

The total number of reflection possible is 82, but it is given that 85 reflection has occurred. Therefore given situation is impossible.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
- Why is the following situation impossible? A laser beam strikes one end of a slab of material of length L = 42.0 cm and thickness t = 3.10 mm as shown in Figure P34.36 (not to scale). It enters the material at the center of the left end, striking it at an angle of incidence of 0 = 50.0°. The index of refraction of the slab is n = 1.48. The light makes 85 inter- nal reflections from the top and bottom of the slab before exiting at the other end. 0 -L- n Figure P34.36
An optical cable in air is orientated horizontally. The cable has a core and a cladding layer. The index of refraction for the core is 1.3 and the index of refraction for the cladding layer is 1.2. A light ray enters the center of the cable with an incident angle ß=58°. The ray is subsequently refracted at the core-cladding interface and the cladding-air interface. The angle between the exit ray and the cable wall is a. What is the angle a? The index of refraction of air is 1. ←cladding -core
A ray of light strikes a flat glass block at an incidence angle of ?1 = 34.4°. The glass is 2.00 cm thick and has an index of refraction that equals ng = 1.20. A light ray incident on a glass block of thickness 2.00 cm is shown. The ray travels down and to the right and is incident to the top of the block at an angle ?1 to the normal of the surface. The ray inside the block moves down and to the right but at a steeper slope than the incident ray, making an angle of ?2 with the vertical. It is incident on the bottom surface of the block, making an angle of ?3 with the vertical, and exits moving down and to the right, at a less steep slope, making an angle of ?4 with the vertical. A dashed line extends from the original path of the ray down in the block and is shown to be a distance d from the ray that exits the glass block. (a) What is the angle of refraction, ?2, that describes the light ray after it enters the glass from above? (Enter your answer in degrees to at least 2…

Chapter 35 Solutions

Physics for Scientists and Engineers With Modern Physics

Ch. 35 - Prob. 6OQCh. 35 - Prob. 7OQCh. 35 - Prob. 8OQCh. 35 - Prob. 9OQCh. 35 - Prob. 10OQCh. 35 - Prob. 11OQCh. 35 - Prob. 12OQCh. 35 - Prob. 13OQCh. 35 - Prob. 14OQCh. 35 - Prob. 15OQCh. 35 - Prob. 1CQCh. 35 - Prob. 2CQCh. 35 - Prob. 3CQCh. 35 - Prob. 4CQCh. 35 - Prob. 5CQCh. 35 - Prob. 6CQCh. 35 - Prob. 7CQCh. 35 - Prob. 8CQCh. 35 - Prob. 9CQCh. 35 - Prob. 10CQCh. 35 - Prob. 11CQCh. 35 - (a) Under what conditions is a mirage formed?...Ch. 35 - Prob. 13CQCh. 35 - Prob. 14CQCh. 35 - Prob. 15CQCh. 35 - Prob. 16CQCh. 35 - Prob. 17CQCh. 35 - Prob. 1PCh. 35 - Prob. 2PCh. 35 - In an experiment to measure the speed of light...Ch. 35 - As a result of his observations, Ole Roemer...Ch. 35 - Prob. 5PCh. 35 - Prob. 6PCh. 35 - Prob. 7PCh. 35 - Prob. 8PCh. 35 - Prob. 9PCh. 35 - Prob. 10PCh. 35 - Prob. 11PCh. 35 - A ray of light strikes a flat block of glass (n =...Ch. 35 - Prob. 13PCh. 35 - Prob. 14PCh. 35 - Prob. 15PCh. 35 - Prob. 16PCh. 35 - Prob. 17PCh. 35 - Prob. 18PCh. 35 - When you look through a window, by what time...Ch. 35 - Two flat, rectangular mirrors, both perpendicular...Ch. 35 - Prob. 21PCh. 35 - Prob. 22PCh. 35 - Prob. 23PCh. 35 - Prob. 24PCh. 35 - Prob. 25PCh. 35 - Prob. 26PCh. 35 - Prob. 27PCh. 35 - Prob. 28PCh. 35 - Prob. 29PCh. 35 - Prob. 30PCh. 35 - Prob. 31PCh. 35 - Prob. 32PCh. 35 - Prob. 33PCh. 35 - A submarine is 300 m horizontally from the shore...Ch. 35 - Prob. 35PCh. 35 - Prob. 36PCh. 35 - Prob. 37PCh. 35 - Prob. 39PCh. 35 - Prob. 40PCh. 35 - Prob. 41PCh. 35 - Prob. 42PCh. 35 - Prob. 43PCh. 35 - Prob. 44PCh. 35 - Assume a transparent rod of diameter d = 2.00 m...Ch. 35 - Consider a light ray traveling between air and a...Ch. 35 - Prob. 47PCh. 35 - Prob. 48PCh. 35 - Prob. 49PCh. 35 - Prob. 50PCh. 35 - Prob. 51APCh. 35 - Prob. 52APCh. 35 - Prob. 53APCh. 35 - Prob. 54APCh. 35 - Prob. 55APCh. 35 - Prob. 56APCh. 35 - Prob. 57APCh. 35 - Prob. 58APCh. 35 - Prob. 59APCh. 35 - A light ray enters the atmosphere of a planet and...Ch. 35 - Prob. 61APCh. 35 - Prob. 62APCh. 35 - Prob. 63APCh. 35 - Prob. 64APCh. 35 - Prob. 65APCh. 35 - Prob. 66APCh. 35 - Prob. 67APCh. 35 - Prob. 68APCh. 35 - Prob. 69APCh. 35 - Prob. 70APCh. 35 - Prob. 71APCh. 35 - Prob. 72APCh. 35 - Prob. 73APCh. 35 - Prob. 74APCh. 35 - Prob. 75APCh. 35 - Prob. 76APCh. 35 - Prob. 77APCh. 35 - Prob. 78APCh. 35 - Prob. 79APCh. 35 - Prob. 80APCh. 35 - Prob. 81CPCh. 35 - Prob. 82CPCh. 35 - Prob. 83CPCh. 35 - Prob. 84CPCh. 35 - Prob. 85CPCh. 35 - Prob. 86CPCh. 35 - Prob. 87CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning