Finding the Volume of a Tetrahedron In Exercises 41-46, find the volume of the tetrahedron with the given vertices.
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Elementary Linear Algebra (MindTap Course List)
- Verifying a Polygon In Exercises 25-28, show that the points form the vertices of the polygon. Isosceles triangle: 1,3,3,2,2,4.arrow_forwardLinear Algebra 1)Calculate the area of the parallelogram in which three consecutive verticesare A(1, 0, 1), B(2, 1, 3) and C(3, 2, 5). 2)Calculate the area of the triangle with vertices A(1, 2, 1), B (3, 0, 4) and C(5,1,3)arrow_forwardThe base of a certain solid is the triangle with vertices at (-6, 3), (3,3), and the origin. Cross-sections perpendicular to the y- axis are squares. The volume of this solid isarrow_forward
- Determine the volume of the parallelepiped with one vertex at the origin and the three vertices adjacent to it at (1, −2, −2), (3, −3, −4), and (−2, −2, 1). Volume = 0arrow_forwardGeometry point A is a corner of a parallelepiped which has adjacent corners B, C and D as shown in the figure. what is the volume of the figure?arrow_forwardHello there, can you help me solve a problem? Thank you!arrow_forward
- A closed rectangular box with faces parallel to the coordinate planes has one bottom corner at the origin and the opposite top corner in the first octant on the plane 6x + 2y +z = 1. What is the maximum volume of such a box? volume = Submit answerarrow_forwardFencing a field A farmer wishes to put a fence around a rec- tangular field and then divide the field into three rectangu- lar plots by placing two fences parallel to one of the sides. If the farmer can afford only 1000 yards of fencing, what di- mensions will give the maximum rectangular area?arrow_forward. Volume of a Parallelepiped A parallelepiped has one vertex at the origin; the three edges that have the origin as one end- point extend to the points P(0, 2, 2), Q(3, 1, –1), and R(1, 4, 1). Find the volume of the parallelepiped.arrow_forward
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningElementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage Learning
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage