Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 34, Problem 44P
(a)
To determine
The probability of finding the particle.
(b)
To determine
The probability of finding the particle.
(c)
To determine
The probability of finding the particle.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(2nx
sin
\1.50.
2nz
Consider the case of a 3-dimensional particle-in-a-box. Given: 4 =
sin(ny) sin
2.00.
What is the energy of the system?
O 6h?/8m
O 4h²/8m
O 3h2/8m
O none are correct
Which of the following is/are correct for the equation y(x) dx defined for a particle
whose state function is y(x)
(11)
(iii)
This equation gives the probability of the particle with the range x to X₂.
This equation applies to the particle moving in any dimension.
This equation defines relation between the state function and the probability
with the range x; to x₂-
(a) Only (1)
(b) (ii) and (iii)
(c) (i) and (iii)
(d) (i) and (ii)
A quantum system has a ground state with energy E0 = 0 meV and a 7-fold degenerate excited state with energy E1 = 78 meV. Calculate the probability of finding the system in its ground state when it is at T = 300 K.
Chapter 34 Solutions
Physics for Scientists and Engineers
Ch. 34 - Prob. 1PCh. 34 - Prob. 2PCh. 34 - Prob. 3PCh. 34 - Prob. 4PCh. 34 - Prob. 5PCh. 34 - Prob. 6PCh. 34 - Prob. 7PCh. 34 - Prob. 8PCh. 34 - Prob. 9PCh. 34 - Prob. 10P
Ch. 34 - Prob. 11PCh. 34 - Prob. 12PCh. 34 - Prob. 13PCh. 34 - Prob. 14PCh. 34 - Prob. 15PCh. 34 - Prob. 16PCh. 34 - Prob. 17PCh. 34 - Prob. 18PCh. 34 - Prob. 19PCh. 34 - Prob. 20PCh. 34 - Prob. 21PCh. 34 - Prob. 22PCh. 34 - Prob. 23PCh. 34 - Prob. 24PCh. 34 - Prob. 25PCh. 34 - Prob. 26PCh. 34 - Prob. 27PCh. 34 - Prob. 28PCh. 34 - Prob. 29PCh. 34 - Prob. 30PCh. 34 - Prob. 31PCh. 34 - Prob. 32PCh. 34 - Prob. 33PCh. 34 - Prob. 34PCh. 34 - Prob. 35PCh. 34 - Prob. 36PCh. 34 - Prob. 37PCh. 34 - Prob. 38PCh. 34 - Prob. 39PCh. 34 - Prob. 40PCh. 34 - Prob. 41PCh. 34 - Prob. 42PCh. 34 - Prob. 43PCh. 34 - Prob. 44PCh. 34 - Prob. 45PCh. 34 - Prob. 46PCh. 34 - Prob. 47PCh. 34 - Prob. 48PCh. 34 - Prob. 49PCh. 34 - Prob. 50PCh. 34 - Prob. 51PCh. 34 - Prob. 52PCh. 34 - Prob. 53PCh. 34 - Prob. 54PCh. 34 - Prob. 55PCh. 34 - Prob. 56PCh. 34 - Prob. 57PCh. 34 - Prob. 58PCh. 34 - Prob. 59PCh. 34 - Prob. 60PCh. 34 - Prob. 61PCh. 34 - Prob. 62PCh. 34 - Prob. 63PCh. 34 - Prob. 64PCh. 34 - Prob. 65PCh. 34 - Prob. 66PCh. 34 - Prob. 67PCh. 34 - Prob. 68PCh. 34 - Prob. 69PCh. 34 - Prob. 70PCh. 34 - Prob. 71PCh. 34 - Prob. 72PCh. 34 - Prob. 73P
Knowledge Booster
Similar questions
- Problem 3. Consider the two example systems from quantum mechanics. First, for a particle in a box of length 1 we have the equation h² d²v 2m dx² EV, with boundary conditions (0) = 0 and (1) = 0. Second, the Quantum Harmonic Oscillator (QHO) V = EV h² d² 2m da² +ka²) 1 +kx² 2 (a) Write down the states for both systems. What are their similarities and differences? (b) Write down the energy eigenvalues for both systems. What are their similarities and differences? (c) Plot the first three states of the QHO along with the potential for the system. (d) Explain why you can observe a particle outside of the "classically allowed region". Hint: you can use any state and compute an integral to determine a probability of a particle being in a given region.arrow_forwardPlease Asaparrow_forwardConsider a one-dimensional particle which is confined within the region 0≤x≤a and whose wave function is (x, t) = sin (x/a) exp(-iwt). (D) v sv (a) Find the potential V(x). (b) Calculate the probability of finding the particle in the interval a/4 ≤x≤3a/4.arrow_forward
- A single electron of mass m can move freely along a one-dimensionl gold nanowire. Let x be the position coordinate of the electron along the wire. (a) Let ø (x) be the wave function of the electron. The quantity |ø (x)| has dimensions of inverse length. Explain very briefly the meaning of this quantity as a probability density. (b) Let us assume that $ (x) = A sin (3kox) (2) where A and ko are fixed, positive constants. Establish whether this wave function represents an eigenstate of momentum p. Justify your answer. Hint: the momentum operator is p -ih. - (c) Establish whether the wave function (x) given in Eq. (2) represents an eigenstate of kinetic energy K. Justify your answer. Hint: the kinetic energy operator is K = p²/2m. (d) Let us now assume that the gold nanowire mentioned above is not infinite, but extends over a finite length from r= 0 to x = L. Inside this region, the potential energy of the electron is zero, but outside this region the potential energy is infinite…arrow_forwardProblem 3. Consider the two example systems from quantum mechanics. First, for a particle in a box of length 1 we have the equation h² d²v EV, 2m dx² with boundary conditions (0) = 0 and V(1) = 0. Second, the Quantum Harmonic Oscillator (QHO) = h² d² +kr²V = EV 2m dg²+ka² 1/ k2²) v (a) Write down the states for both systems. What are their similarities and differences? (b) Write down the energy eigenvalues for both systems. What are their similarities and differences? (c) Plot the first three states of the QHO along with the potential for the system. (d) Explain why you can observe a particle outside of the "classically allowed region". Hint: you can use any state and compute an integral to determine a probability of a particle being in a given region.arrow_forwardConsider a model thermodynamic assembly in which the allowed one-particle states have energies 0, ?, 2?, 3?, 4?,5?,6?,.... The assembly has three particles and a total energy of 7?. Identify the possible particle number distributions and calculate the average distribution of the three particles in the energy states when the particles are (a) localized and distinguishable (b) gaseous bosons (c) gaseous fermionsarrow_forward
- Consider a potential barrier defined by = U (x) T = with Uo 1.00 eV. An electron with energy E > 1 eV moving in the positive x- direction is incident on this potential. The transmission probability for this situation is given by x L 4(E/Uo) [(E/Uo) - 1] sin² [√2m(E – U₁)L/ħ] + 4(E/U₁) [(E/U₁) − 1] It is found that the reflection probability is zero for E = 1.10 eV and non-zero for smaller incident energies. What is the width of the potential barrier L?arrow_forwardA particle is confined between rigid walls separated by a distance L = 0.189 nm. The particle is in the second excited state (n = 3). Evaluate the probability to find the particle in an interval of width 1.00 pm located at (a) x=0.188 nm; (b) x = 0.031 nm; (c) x = 0.079 nm. (Hint: No integrations are required for this problem; use Eq. 5.7 directly.) (d) What would be the corresponding results for a classical particle?arrow_forwardV (x) = 00, V(x) = 0, x<0,x 2 a 0arrow_forwardIn a simple model for a radioactive nucleus, an alpha particle (m = 6.64 * 10-27 kg) is trapped by a square barrier that has width 2.0 fm and height 30.0 MeV. (a) What is the tunneling probability when the alpha particle encounters the barrier if its kinetic energy is 1.0 MeV below the top of the barrier (Fig. )? (b) What is the tunneling probability if the energy of the alpha particle is 10.0 MeV below the top of the barrier?arrow_forwardWe can approximate an electron moving in a nanowire (a small, thin wire) as a one-dimensional infi nite square-well potential. Let the wire be 2.0 μm long. The nanowire is cooled to a temperature of 13 K, and we assume the electron’s average kinetic energy is that of gas molecules at this temperature ( 3kT/2). (a) What are the three lowest possible energy levels of the electrons? (b) What is the approximate quantum number of electrons moving in the wire?arrow_forward2arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON