Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 34, Problem 71P
(a)
To determine
The proof that
(b)
To determine
The approximate percent energy change.
(c)
To determine
The comment for relation of result with Bohr’s correspondence principle.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) Using de-Broglie’s hypothesis, explain with the help of a suitable diagram, Bohr’s second postulate of quantization of energy levels in a hydrogen atom.
(b) The ground state energy of hydrogen atom is -13.6 eV. What are the kinetic and potential energies of the state?
(a) Construct an energy-level diagram for the He+ ion, for which Z = 2, using the Bohr model. (b) What is the ionization energy for He1?
(a) Predict the energy in eV of a photon emitted in a transition from the first excited state to the ground state in eV for a system consisting of a nucleus containing Z = 50 protons and just one electron. You need not recapitulate the entire derivation for the Bohr model, but think carefully about the changes you have to make to take into account the factor Z.
(b) The negative muon (μ−) behaves like a heavy electron, with the same charge as the electron but with a mass 207 times as large as the electron mass. As a moving μ− comes to rest in matter, it tends to knock electrons out of atoms and settle down onto a nucleus to form a "one-muon" atom. For a system consisting of a nucleus of platinum (Pt195 with 78 protons and 117 neutrons) and just one negative muon, predict the energy in eV of a photon emitted in a transition from the first excited state to the ground state. The high-energy photons emitted by transitions between energy levels in such "muonic atoms" are easily observed in…
Chapter 34 Solutions
Physics for Scientists and Engineers
Ch. 34 - Prob. 1PCh. 34 - Prob. 2PCh. 34 - Prob. 3PCh. 34 - Prob. 4PCh. 34 - Prob. 5PCh. 34 - Prob. 6PCh. 34 - Prob. 7PCh. 34 - Prob. 8PCh. 34 - Prob. 9PCh. 34 - Prob. 10P
Ch. 34 - Prob. 11PCh. 34 - Prob. 12PCh. 34 - Prob. 13PCh. 34 - Prob. 14PCh. 34 - Prob. 15PCh. 34 - Prob. 16PCh. 34 - Prob. 17PCh. 34 - Prob. 18PCh. 34 - Prob. 19PCh. 34 - Prob. 20PCh. 34 - Prob. 21PCh. 34 - Prob. 22PCh. 34 - Prob. 23PCh. 34 - Prob. 24PCh. 34 - Prob. 25PCh. 34 - Prob. 26PCh. 34 - Prob. 27PCh. 34 - Prob. 28PCh. 34 - Prob. 29PCh. 34 - Prob. 30PCh. 34 - Prob. 31PCh. 34 - Prob. 32PCh. 34 - Prob. 33PCh. 34 - Prob. 34PCh. 34 - Prob. 35PCh. 34 - Prob. 36PCh. 34 - Prob. 37PCh. 34 - Prob. 38PCh. 34 - Prob. 39PCh. 34 - Prob. 40PCh. 34 - Prob. 41PCh. 34 - Prob. 42PCh. 34 - Prob. 43PCh. 34 - Prob. 44PCh. 34 - Prob. 45PCh. 34 - Prob. 46PCh. 34 - Prob. 47PCh. 34 - Prob. 48PCh. 34 - Prob. 49PCh. 34 - Prob. 50PCh. 34 - Prob. 51PCh. 34 - Prob. 52PCh. 34 - Prob. 53PCh. 34 - Prob. 54PCh. 34 - Prob. 55PCh. 34 - Prob. 56PCh. 34 - Prob. 57PCh. 34 - Prob. 58PCh. 34 - Prob. 59PCh. 34 - Prob. 60PCh. 34 - Prob. 61PCh. 34 - Prob. 62PCh. 34 - Prob. 63PCh. 34 - Prob. 64PCh. 34 - Prob. 65PCh. 34 - Prob. 66PCh. 34 - Prob. 67PCh. 34 - Prob. 68PCh. 34 - Prob. 69PCh. 34 - Prob. 70PCh. 34 - Prob. 71PCh. 34 - Prob. 72PCh. 34 - Prob. 73P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Check Your Understanding A sodium atom nukes a transition from the first excited state the wound state, emitting a 589.0-nm photon with energy 2.105 eV. If the lifetime of this excited state is 16108s, what is the uncertainty in energy of this state? What is width of the corresponding line?arrow_forward(a) Using the Bohr model, calculate the speed of the electron in a hydrogen atom in the n = 1, 2, and 3 levels. (b) Calculate the or- bital period in each of these levels. (c) The average lifetime of the first excited level of a hydrogen atom is 1.0 x 10-8 s. In the Bohr model, how many orbits does an electron in the n = 2 level complete before returning to the ground level?arrow_forwardProve that The fine structure constant,a = v /c, here vị is the velocity of the electron in the ground state of the Bohr atom and a = 28ghc where the symbols have their usual meaning.arrow_forward
- What is the total mechanical energy for a ground- state electron in H, He*, and Li++ atoms? For which atom is the electron most strongly bound? Why?arrow_forwardFind the quantum number corresponding to the excited state of He* , if on transition to the ground state that ion emits 2 photons in succession with wavelengths 1.98nm and 30.4nm? В I U !!arrow_forward(a) What is the wavelength of light for the least energetic photon emitted in the Balmer series of the hydrogen atom spectrum lines? (b) What is the wavelength of the series limit?arrow_forward
- (A) Calculate the most probable value of r for an electron in the ground state of the hydrogen atom. (B) Calculate the probability that the electron in the ground state of hydrogen will be found outside the Bohr radius.arrow_forward(a) An electron and a 0.0400 kg bullet each have a velocity of magnitude 510 m/s, accurate to within 0.0100%. Within what lower limit could we determine the position of each object along the direction of the velocity? (Give the lower limit for the electron in mm and that for the bullet in m.) for the electron 0.01136 for the bullet 2.585e-34 mm m (b) What If? Within what lower limit could we determine the position of each object along the direction of the velocity if the electron and the bullet were both relativistic, traveling at 0.450c measured with the same accuracy? (Give the lower limit for the electron in nm and that for the bullet in m.) for the electron for the bullet 4.2899 X nm 9.76445e-42 X marrow_forwardAn electron is trapped in a one-dimensional region of length 1.00 x 10-10 m (a typical atomic diameter). (a) Find the energies of the ground state and first two excited states. (b) How much energy must be supplied to excite the electron from the ground state to the sec- ond excited state? (c) From the second excited state, the electron drops down to the first excited state. How much energy is released in this process?arrow_forward
- An electron is in a state withL=3. (a) What multiple of gives the magnitude of ? (b) What multiple of mBgives the magnitude of ? (c) What is the largest possible valueof , (d) what multiple of gives the corresponding value of Lz,and (e) what multiple of mB gives the corresponding value of morb,z?(f ) What is the value of the semiclassical angle u between the directionsof Lz and ? What is the value of angle u for (g) the secondlargest possible value of and (h) the smallest (that is, most negative)possible value of ?arrow_forwardA Hydrogen atom initially in its ground state i.e., n = 1 level, absorbs a photon and ends up in n = 4 level. (a) What must have been the frequency of the photon? Now the electron makes spontaneous emission and comes back to the ground state. (b) What are the possible frequencies of the photons emitted during this process?arrow_forwardA hydrogen atom in an excited 5f state is in a magnetic fi eld of 3.00 T. How many energy states can the electron have in the 5f subshell? (Ignore the magnetic spin effects.) What is the energy of the 5f state in the absence of a magnetic fi eld? What will be the energy of each state in the magnetic field?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning