The radii of curvature of the surfaces of a thin converging meniscus lens are R 1 = +12.0 cm and R 2 = +28.0 cm. The index of refraction is 1.60. (a) Compute the position and size of the image of an object in the form of an arrow 5.00 mm tall, perpendicular to the lens axis, 45.0 cm to the left of the lens. (b) A second converging lens with the same focal length is placed 3.15 m to the right of the first. Find the position and size of the final image. Is the final image erect or inverted with respect to the original object? (c) Repeat part (b) except with the second lens 45.0 cm to the right of the first.
The radii of curvature of the surfaces of a thin converging meniscus lens are R 1 = +12.0 cm and R 2 = +28.0 cm. The index of refraction is 1.60. (a) Compute the position and size of the image of an object in the form of an arrow 5.00 mm tall, perpendicular to the lens axis, 45.0 cm to the left of the lens. (b) A second converging lens with the same focal length is placed 3.15 m to the right of the first. Find the position and size of the final image. Is the final image erect or inverted with respect to the original object? (c) Repeat part (b) except with the second lens 45.0 cm to the right of the first.
The radii of curvature of the surfaces of a thin converging meniscus lens are R1 = +12.0 cm and R2 = +28.0 cm. The index of refraction is 1.60. (a) Compute the position and size of the image of an object in the form of an arrow 5.00 mm tall, perpendicular to the lens axis, 45.0 cm to the left of the lens. (b) A second converging lens with the same focal length is placed 3.15 m to the right of the first. Find the position and size of the final image. Is the final image erect or inverted with respect to the original object? (c) Repeat part (b) except with the second lens 45.0 cm to the right of the first.
The radii of curvature of the surfaces of a thin converging meniscus lens are R1 = +12.0 cm and R2 = +28.0 cm. The index of refraction is 1.60. (a) Compute the position and size of the image of an object in the form of an arrow 5.00 mm tall, perpendicular to the lens axis, 45.0 cm to the left of the lens. (b) A second converging lens with the same focal length is placed 3.15 m to the right of the first. Find the position and size of the final image. Is the final image erect or inverted with respect to the original object? (c) Repeat part (b) except with the second lens 45.0 cm to the right of the first.
A thick-walled wine goblet can be considered to be a hollow glass sphere with an outer radius of 4.10 cmcm and an inner radius of 3.60 cmcm. The index of refraction of the goblet glass is 1.50. (a) A beam of parallel light rays enters the side of the empty goblet along a horizontal radius. Where, if anywhere, will an image be formed? (b) The goblet is filled with white wine (nn = 1.37). Where is the image formed?
Use the image from the previous part as the object for the second surface (the inner wall of the same side of the goblet) and find the position of the second image.
Express your answer with the appropriate units.
When two lenses are used in combination, the first one forms an image that then serves as the object for the second lens. The magnification of the combination is the ratio of the height of the final image to the height of the object. This is equal to the product of the separate magnification values mm of each lens. In equation form
mtotal=(m1)(m2).
A 1.20 cm tall object is 50.0 cm to the left of a lens of focal length of magnitude 40.0 cm . A second lens, this one having a focal length of magnitude 60.0 cm, is located 300 cm to the right of the first lens along the same optic axis.
A)
Find the location and height of the image (call it I2) formed by the lens with a focal length of 40.0 cm if the first lens is diverging and the second lens is a converging.
B)
I2 is now the object for the second lens. Find the location and height of the image produced by the second lens.
Chapter 34 Solutions
University Physics with Modern Physics (14th Edition)
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.