Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 33, Problem 45AP
(a)
To determine
The steady state temperature of the boxes interior.
(b)
To determine
The steady state temperature of the boxes interior when the elevation of sun is 50 °
.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider a highly polished reflective surface. WHat would be the maximum radiation pressure excerted by
sunlight in space (S =
1350W /m²).
O 0.12PA
4.5 × 10–5 Pa
9.0 × 10–6Pa
2.3 x 10-6 Pa
O 1.4 x 10-² Pa
The skin reflects most visible and IR-A (near-infrared) radiation. The epidermis is highly absorbing at UV-B and UV-C wavelengths and at IR-B and IR-C wavelengths. True or False
The photoelectric effect can be used in engineering designs for practical applications. For example, infrared goggles used in night-vision applications have materials that
give an electrical signal with exposure to the relatively long wavelength of IR light. If the energy needed for signal generation is 6.4 x 10-20 J, what is the minimum
wavelength? What is the frequency of light that can be detected?
c = 2.998 x 10° m/s
h = 6.626 x 10-34 J s
s-1
Submit Answer
Retry Entire Group
No more group attempts remain
Chapter 33 Solutions
Physics for Scientists and Engineers
Ch. 33.1 - Prob. 33.1QQCh. 33.3 - What is the phase difference between the...Ch. 33.3 - Prob. 33.3QQCh. 33.5 - Prob. 33.4QQCh. 33.6 - If the antenna in Figure 33.11 represents the...Ch. 33.7 - Prob. 33.6QQCh. 33.7 - A radio wave of frequency on the order of 105 Hz...Ch. 33 - Prob. 1PCh. 33 - Prob. 2PCh. 33 - A proton moves through a region containing a...
Ch. 33 - A diathermy machine, used in physiotherapy,...Ch. 33 - The distance to the North Star, Polaris, is...Ch. 33 - A radar pulse returns to the transmitterreceiver...Ch. 33 - The speed of an electromagnetic wave traveling in...Ch. 33 - You are working for SETI, the Search for...Ch. 33 - Review. A microwave oven is powered by a...Ch. 33 - Verify by substitution that the following...Ch. 33 - Why is the following situation impossible? An...Ch. 33 - At what distance from the Sun is the intensity of...Ch. 33 - If the intensity of sunlight at the Earths surface...Ch. 33 - Prob. 14PCh. 33 - High-power lasers in factories are used to cut...Ch. 33 - Review. Model the electromagnetic wave in a...Ch. 33 - Prob. 17PCh. 33 - Prob. 18PCh. 33 - Prob. 19PCh. 33 - Prob. 20PCh. 33 - A 25.0-mW laser beam of diameter 2.00 mm is...Ch. 33 - The intensity of sunlight at the Earths distance...Ch. 33 - Prob. 23PCh. 33 - Prob. 24PCh. 33 - Prob. 25PCh. 33 - Assume the intensity of solar radiation incident...Ch. 33 - Extremely low-frequency (ELF) waves that can...Ch. 33 - A large, flat sheet carries a uniformly...Ch. 33 - Prob. 29PCh. 33 - Prob. 30PCh. 33 - Prob. 31PCh. 33 - An important news announcement is transmitted by...Ch. 33 - Assume the intensity of solar radiation incident...Ch. 33 - Classify waves with frequencies of 2 Hz, 2 kHz, 2...Ch. 33 - The eye is most sensitive to light having a...Ch. 33 - Prob. 36APCh. 33 - You are working as a radio technician. One day,...Ch. 33 - One goal of the Russian space program is to...Ch. 33 - The intensity of solar radiation at the top of the...Ch. 33 - The Earth reflects approximately 38.0% of the...Ch. 33 - Consider a small, spherical particle of radius r...Ch. 33 - Consider a small, spherical particle of radius r...Ch. 33 - Review. A 1.00-m-diameter circular mirror focuses...Ch. 33 - Prob. 44APCh. 33 - Prob. 45APCh. 33 - You may wish to review Sections 16.4 and 16.8 on...Ch. 33 - You are working at NASA, in a division that is...Ch. 33 - Prob. 48APCh. 33 - Prob. 49APCh. 33 - Prob. 50CPCh. 33 - Prob. 51CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Solar cells generally have an antireflection coating. Explain how this increases their efficiency.arrow_forward(a) How many minutes does it take a photon to travel from the Sun to the Earth? in minutes (b) What is the energy in eV of a photon with a wavelength of 533 nm? in eV (c) What is the wavelength (in m) of a photon with an energy of 1.03 eV? in metersarrow_forwardIn a lab, a shielding layer on a device's housing is required to shield incident radiation.The reflectance of a coating material is 0.15, while the absorption coefficient (α) is 100 cm-1.Create a shield coating layer that allows only 0.5 percent of the light to pass through.Radiation from the incident source will be passed through the coating.arrow_forward
- As an unpolarized light goes through 3 filters, the 1st one is horizontally polarized, the 2nd one polarizes with an angle of 50 degrees from vertical, and the 3rd one is vertically polarized. What is the intensity of light through the 3 polarizers if the incident intesity is 9 W/m2?arrow_forwardA microwave source produces pulses of 20.0-GHz radiation, with each pulse lasting 1.00 ns. A parabolic reflector with a face area of radius 6.00 cm is used to focus the micro-waves into a parallel beam of radiation as shown in Figure P24.72. The average power during each pulse is 25.0 kW. (a) What is the wavelength of these microwaves? (b) What is the total energy contained in each pulse? (c) Compute the average energy density inside each pulse. (d) Determine the amplitude of the electric and magnetic fields in these microwaves. (e) Assuming that this pulsed beam strikes an absorbing surface, compute the force exerted on the surface during the 1.00-ns duration of each pulse.arrow_forwardA laser beam at a wavelength of 1.11 μm is coupled into an optic fiber, resulting in 138.2 mW of light inside the fiber initially. The fiber is 4.75 km long and has an absorption coefficienct of 1.562 dB/km. What light power, in mW, is at the end of the fiber?arrow_forward
- The photoelectric effect can be used in engineering designs for practical applications. For example, infrared goggles used in night-vision applications have materials that give an electrical signal with exposure to the relatively long wavelength of IR light. If the energy needed for signal generation is 7.5 x 10-20 J, what is the minimum wavelength? What is the frequency of light that can be detected? c = 2.998 x 10 m/s h = 6.626 x 10-34 J s marrow_forwardA radio antenna 326 m in diameter receives a radio signal from a very distant object at perpendicular incidence. The radio signal is a continuous sine wave with an amplitude of Emax = 0.82x10-5 V/m. Assume that the antenna absorbs all the radiation that falls on the disk and calculate the power in Watts received by the antenna. Select one: a. 3.0e-8 b. 2.3e-8 c. 7.4e-4 d. 7.4e-9arrow_forward(a) How many minutes does it take a photon to travel from the Sun to the Earth? 8.33 It can be useful to remember that light travels from the Sun to Earth in about 8.32 minutes. min (b) What is the energy in eV of a photon with a wavelength of 608 nm? 2.03 ev (c) What is the wavelength (in m) of a photon with an energy of 1.73 eV? 716 x marrow_forward
- For calculations, take the typical frequency of visible light and aluminum conductivity ω = 4 x 1015 s-1 σ = 3.8 x 107 Ohm/marrow_forwardThe cylindrical beam of a 12.8-mW laser is 0.940 cm in diameter. What is the rms value of the electric field? answer in V/m*arrow_forwardThe drawing shows an edge-on view of the solar panels on a communications satellite. The dashed line specifies the normal to the panels. Sunlight stikes the panels at an angle with respect to the normal. If the solar power impinging on the panels is 1700 W when = 78°, what is it when = 39°? Number Mi Normal Sunlight Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY