Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 32, Problem 66P
To determine
To find:
The greatest displacement current through the area
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A uniform electric field is increasing at a constant rate over time. If the displacement current through a 1.0 cm2 surface area perpendicular to
the electric field vector is 3.0 nA, find the rate at which the electric field changes.
A uniform electric field perpendicular to a spherical surface of radius 5.00 cm is increasing at a rate of 4.00 V/m•µs. Find the displacement
current through the spherical surface.
In a given region of space there is an electric field that can be described by the equation
E = 5tax + 4ay + 2az
In the above equation t is the time and ax, ayand az are unit vectors in the x, y and z direction.
i)What is the displacement current density in this region?
ii)What is the displacement current flowing through the surface S = 2ax + 3ay + az?
Chapter 32 Solutions
Fundamentals of Physics Extended
Ch. 32 - Figure 32-19a shows a capacitor, with circular...Ch. 32 - Prob. 2QCh. 32 - Prob. 3QCh. 32 - Figure 32-22a shows a pair of opposite spin...Ch. 32 - An electron in an external magnetic field Bext has...Ch. 32 - Prob. 6QCh. 32 - Figure 32-23 shows a face-on view of one of the...Ch. 32 - Prob. 8QCh. 32 - Replace the current loops of Question 8 and Fig....Ch. 32 - Prob. 10Q
Ch. 32 - Figure 32-25 represents three rectangular samples...Ch. 32 - Prob. 12QCh. 32 - Prob. 1PCh. 32 - Prob. 2PCh. 32 - Prob. 3PCh. 32 - Prob. 4PCh. 32 - Prob. 5PCh. 32 - Prob. 6PCh. 32 - Prob. 7PCh. 32 - GO Nonuniform electric flux. Figure 32-30 shows a...Ch. 32 - Prob. 9PCh. 32 - Prob. 10PCh. 32 - Prob. 11PCh. 32 - Prob. 12PCh. 32 - Prob. 13PCh. 32 - Prob. 14PCh. 32 - Prob. 15PCh. 32 - Prob. 16PCh. 32 - Prob. 17PCh. 32 - Prob. 18PCh. 32 - Prob. 19PCh. 32 - Prob. 20PCh. 32 - Prob. 21PCh. 32 - Prob. 22PCh. 32 - Prob. 23PCh. 32 - The magnitude of the electric field between the...Ch. 32 - Prob. 25PCh. 32 - Prob. 26PCh. 32 - Prob. 27PCh. 32 - GO Figure 32-35a shows the current i that is...Ch. 32 - Prob. 29PCh. 32 - Assume the average value of the vertical component...Ch. 32 - In New Hampshire the average horizontal component...Ch. 32 - Figure 32-37a is a one-axis graph along which two...Ch. 32 - SSM WWWIf an electron in an atom has an orbital...Ch. 32 - Prob. 34PCh. 32 - What is the measured component of the orbital...Ch. 32 - Prob. 36PCh. 32 - Prob. 37PCh. 32 - Assume that an electron of mass m and charge...Ch. 32 - A sample of the paramagnetic salt to which the...Ch. 32 - A sample of the paramagnetic salt to which the...Ch. 32 - Prob. 41PCh. 32 - Prob. 42PCh. 32 - Prob. 43PCh. 32 - Figure 32-39 gives the magnetization curve for a...Ch. 32 - Prob. 45PCh. 32 - You place a magnetic compass on a horizontal...Ch. 32 - SSM ILW WWW The magnitude of the magnetic dipole...Ch. 32 - The magnitude of the dipole moment associated with...Ch. 32 - SSMThe exchange coupling mentioned in Module 32-8...Ch. 32 - Prob. 50PCh. 32 - Prob. 51PCh. 32 - Prob. 52PCh. 32 - Prob. 53PCh. 32 - Using the approximations given in Problem 61, find...Ch. 32 - Earth has a magnetic dipole moment of 8.0 1022...Ch. 32 - A charge q is distributed uniformly around a thin...Ch. 32 - A magnetic compass has its needle, of mass 0.050...Ch. 32 - Prob. 58PCh. 32 - Prob. 59PCh. 32 - Prob. 60PCh. 32 - SSMThe magnetic field of Earth can be approximated...Ch. 32 - Prob. 62PCh. 32 - Prob. 63PCh. 32 - A sample of the paramagnetic salt to which the...Ch. 32 - Prob. 65PCh. 32 - Prob. 66PCh. 32 - In Fig. 32-42, a parallel-plate capacitor is being...Ch. 32 - What is the measured component of the orbital...Ch. 32 - Prob. 69PCh. 32 - Prob. 70PCh. 32 - Prob. 71PCh. 32 - Prob. 72PCh. 32 - SSM If an electron in an atom has orbital angular...Ch. 32 - Prob. 74PCh. 32 - Prob. 75PCh. 32 - What are the measured components of the orbital...
Knowledge Booster
Similar questions
- In a region of space, the electric field is pointed along the x-axis, but its magnitude changes as described by Ex=(10N/C)sin(20x500t)Ey=Ez=0 where t is in nanoseconds and x is in cm. Find the displacement current through a circle of radius 3 cm in the x = 0 plane at I = 0.arrow_forwardAn air-filled capacitor is composed of parallel large circular plates with a common radius of 8.13 cm. At one instant while it is charging, the conduction current in one of the capacitor terminals is 5.05 A. At this instant, the magnitude of the displacement current density in between the capacitor plates along the line joining their centers is most nearly (A) 243 A/m?. (B) 9.89 A/m?. (C) 2.58 A/m?. (D) 0.105 A/m?. (E) 5.05 A/m².arrow_forwardThe instantaneous B(x, y, z; t) in vacuum is given by B = a,B̟ cos(2y) sin(@ – n2) + a„B, cos(2x) cos(w – nz) Determine the electric displacement current density assuming that there is no source current at point x and y.arrow_forward
- EXAMPLE 31-8 ESTIMATE. A solar sail. Proposals have been made to use the radiation pressure from the Sun to help propel spacecraft around the solar system. (a) About how much force would be applied on a 1 km X 1 km highly reflective sail, and (b) by how much would this increase the speed of a 5000-kg spacecraft in one year? (c) If the spacecraft started from rest, about how far would it travel in a year?arrow_forwardPage 3 of 3 ZOOM + 3) An electric field of 300 V/m is confined to a circular area 10.0 cm in diameter and directed outward perpendicular to the plane of the figure. If the electric field is increasing at a E out of the paper E = 0 here rate of 20.0 what are the direction and magnitude m• s 15.0 cm→P of the magnetic field at point P, 15.0 cm from the center of the circle? +10.0 cm →arrow_forwardThe magnitude of the electric field between the two circular parallel plates in the figure isE = (3.8 × 104)-(6.6 × 105t),with E in volts per meter and t in seconds. At t = 0, the field is upward. The plate area is 4.7 × 10-2 m2. For t > 0, what is the magnitude of the displacement current between the plates?arrow_forward
- The magnitude of the electric field between the two circular parallel plates in the figure isE = (5.3 × 106)-(4.9 × 105t),with E in volts per meter and t in seconds. At t = 0, the field is upward. The plate area is 5.5 × 10-2 m2. For t > 0, what is the magnitude of the displacement current between the plates?arrow_forwarda long, straight copper wire (diameter 2.50 mm and resistance 1.00 ohm per 300 m) carries a uniform current of 25.0 A in the positive x direction. For point P on the wire’s surface, calculate the magnitudes of (a) the electric field , (b) the magnetic field , and (c) the Poynting vector , and (d) determine the direction of S.arrow_forwardWhat capacitance, in μF, has its potential difference increasing at 9.0×105 V/s when the displacement current in the capacitor is 0.60 A ?arrow_forward
- In the figure an electric field is directed out of the page within a circular region of radius R = 3.50 cm. The magnitude of the electric field is given by E (0.800 V/m.s)(1 - r/R)t, where radial distance r≤R and t is in seconds. What is the magnitude of the magnetic field that is induced at radial distances (a)2.50 cm and (b)7.50 cm? R (a) Number i 3.2767933E-21 Units T (b) Number i 1.513724E-20 Units T > >arrow_forwardWhen an electric current flows through the filament of an incandescent light bulb, it gets very hot and glows (or incandesces). Consider a particular bulb with a filament with 140 Ω resistance which carries a current of 1.00 A. Assume the length of the filament is L = 9.00 cm long with a radius of r = 0.900 mm. (a) Calculate the Poynting vector (in kW/m2) at the surface of the filament, associated with the static electric field producing the current and the current's static magnetic field. magnitude: ? kW/m2 direction: Radially inward or outward? (b) Find the magnitudes of the static electric field (in kV/m) and static magnetic field (in µT) at the surface of the filament. electric field: ? kV/m magnetic field: ? µTarrow_forwardAn air-filled capacitor is composed of large parallel circular plates with a common radius of 6.73 cm. At one instant while it is charging, the conduction current in one of the capacitor terminals is 5.37 A. The magnitude of the rate of change of the electric field along a line joining the centers of the parallel plates is most nearly (A) 4.75 x 10-11 V/m-s. (B) 8.60 x 10° V/m-s. (C) 4.28 x 1013 V/m-s. (D) 1.43 x 1012 V/m-s. (E) 2.01 x 10-11 V/m-s.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning