Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
Chapter 32, Problem 32.9P
(a)
To determine
The magnitude of the induced emf at
(b)
To determine
The magnitude of the induced emf at
(c)
To determine
The time at which the emf is zero.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The current in a 62 mH inductor changes with
time as I = bt- at.
With a = 6 A/s and b =
the magnitude of the induced emf, E, at
6 A/s, find
t = 0.7 s.
Answer in units of V.
At what time is the emf zero?
The current in a 90.0-mH inductor changes with time as / = 1.00 -6.00t, where i is in
amperes and t is in seconds. Find the magnitude of the induced emf at t = 4.00 s and at
what time is emf zero.
The current in a 30.0-mH inductor changes with time as i = 2.00t² - 8.00t, where i is in amperes and t is in seconds.
(a) Find the magnitude of the induced emf at t = 1.00 s.
mV
(b) Find the magnitude of the induced emf at t = 4.00 s.
mV
(c) At what time is the emf zero?
S
Chapter 32 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 32 - A coil with zero resistance has its ends labeled a...Ch. 32 - Prob. 32.2QQCh. 32 - Prob. 32.3QQCh. 32 - Prob. 32.4QQCh. 32 - (i) At an instant of time during the oscillations...Ch. 32 - Prob. 32.1OQCh. 32 - Prob. 32.2OQCh. 32 - Prob. 32.3OQCh. 32 - In Figure OQ32.4, the switch is left in position a...Ch. 32 - Prob. 32.5OQ
Ch. 32 - Prob. 32.6OQCh. 32 - Prob. 32.7OQCh. 32 - Prob. 32.1CQCh. 32 - Prob. 32.2CQCh. 32 - A switch controls the current in a circuit that...Ch. 32 - Prob. 32.4CQCh. 32 - Prob. 32.5CQCh. 32 - Prob. 32.6CQCh. 32 - The open switch in Figure CQ32.7 is thrown closed...Ch. 32 - After the switch is dosed in the LC circuit shown...Ch. 32 - Prob. 32.9CQCh. 32 - Discuss the similarities between the energy stored...Ch. 32 - Prob. 32.1PCh. 32 - Prob. 32.2PCh. 32 - Prob. 32.3PCh. 32 - Prob. 32.4PCh. 32 - An emf of 24.0 mV Ls induced in a 500-turn coil...Ch. 32 - Prob. 32.6PCh. 32 - Prob. 32.7PCh. 32 - Prob. 32.8PCh. 32 - Prob. 32.9PCh. 32 - Prob. 32.10PCh. 32 - Prob. 32.11PCh. 32 - A toroid has a major radius R and a minor radius r...Ch. 32 - Prob. 32.13PCh. 32 - Prob. 32.14PCh. 32 - Prob. 32.15PCh. 32 - Prob. 32.16PCh. 32 - Prob. 32.17PCh. 32 - Prob. 32.18PCh. 32 - Prob. 32.19PCh. 32 - When the switch in Figure P32.18 is closed, the...Ch. 32 - Prob. 32.21PCh. 32 - Show that i = Iiet/ is a solution of the...Ch. 32 - Prob. 32.23PCh. 32 - Consider the circuit in Figure P32.18, taking =...Ch. 32 - Prob. 32.25PCh. 32 - The switch in Figure P31.15 is open for t 0 and...Ch. 32 - Prob. 32.27PCh. 32 - Prob. 32.28PCh. 32 - Prob. 32.29PCh. 32 - Two ideal inductors, L1 and L2, have zero internal...Ch. 32 - Prob. 32.31PCh. 32 - Prob. 32.32PCh. 32 - Prob. 32.33PCh. 32 - Prob. 32.34PCh. 32 - Prob. 32.35PCh. 32 - Complete the calculation in Example 31.3 by...Ch. 32 - Prob. 32.37PCh. 32 - A flat coil of wire has an inductance of 40.0 mH...Ch. 32 - Prob. 32.39PCh. 32 - Prob. 32.40PCh. 32 - Prob. 32.41PCh. 32 - Prob. 32.42PCh. 32 - Prob. 32.43PCh. 32 - Prob. 32.44PCh. 32 - Prob. 32.45PCh. 32 - Prob. 32.46PCh. 32 - In the circuit of Figure P31.29, the battery emf...Ch. 32 - A 1.05-H inductor is connected in series with a...Ch. 32 - A 1.00-F capacitor is charged by a 40.0-V power...Ch. 32 - Calculate the inductance of an LC circuit that...Ch. 32 - An LC circuit consists of a 20.0-mH inductor and a...Ch. 32 - Prob. 32.52PCh. 32 - Prob. 32.53PCh. 32 - Prob. 32.54PCh. 32 - An LC circuit like the one in Figure CQ32.8...Ch. 32 - Show that Equation 32.28 in the text Ls Kirchhoffs...Ch. 32 - In Figure 31.15, let R = 7.60 , L = 2.20 mH, and C...Ch. 32 - Consider an LC circuit in which L = 500 mH and C=...Ch. 32 - Electrical oscillations are initiated in a series...Ch. 32 - Review. Consider a capacitor with vacuum between...Ch. 32 - Prob. 32.61APCh. 32 - An inductor having inductance I. and a capacitor...Ch. 32 - A capacitor in a series LC circuit has an initial...Ch. 32 - Prob. 32.64APCh. 32 - When the current in the portion of the circuit...Ch. 32 - At the moment t = 0, a 24.0-V battery is connected...Ch. 32 - Prob. 32.67APCh. 32 - Prob. 32.68APCh. 32 - Prob. 32.69APCh. 32 - At t = 0, the open switch in Figure P31.46 is...Ch. 32 - Prob. 32.71APCh. 32 - Prob. 32.72APCh. 32 - Review. A novel method of storing energy has been...Ch. 32 - Prob. 32.74APCh. 32 - Review. The use of superconductors has been...Ch. 32 - Review. A fundamental property of a type 1...Ch. 32 - Prob. 32.77APCh. 32 - In earlier times when many households received...Ch. 32 - Assume the magnitude of the magnetic field outside...Ch. 32 - Prob. 32.80CPCh. 32 - To prevent damage from arcing in an electric...Ch. 32 - One application of an RL circuit is the generation...Ch. 32 - Prob. 32.83CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 5000-pF capacitor is charged to 100 V and then quickly connected to an 80-mH inductor. Determine (a) the maximum energy stored in the magnetic field of the inductor, (b) the peak value of the current, and (c) the frequency of oscillation of the circuit.arrow_forwardSuppose that a rectangular toroid has 2000 windings and a self-inductance of 0.040 H. If h = 0.10 m, what is the current flowing through a rectangular toroid when the energy in its magnetic field is 2.0 × 10-6 J?arrow_forwardA long, cylindrical solenoid with 100 turns per centimeter has a radius of 1.5 cm. (a) Neglecting end effects, that is the self-inductance per unit length of the solenoid? (b) If the current through the solenoid changes at the rate 5.0 AJs, what is the emf induced per unit length?arrow_forward
- The current in a 90.0-mH inductor changes with time as / = 1.00 -6.00t, where i is in amperes and t is in seconds. Find the magnitude of the induced emf at t = 1.00 sarrow_forwardThe current in a 40.0-mH inductor changes with time as i = 2.00t2 – 7.00t, where i is in amperes and t is in seconds. (a) Find the magnitude of the induced emf at t = 1.00 s. mV (b) Find the magnitude of the induced emf at t = 4.00 s. mV (c) At what time is the emf zero? Need Help? Read It Watch Itarrow_forwardThe current in a 40.0-mH inductor changes with time as i = 3.00t2 − 5.00t, where i is in amperes and t is in seconds. (a) Find the magnitude of the induced emf at t = 1.00 s. mV(b) Find the magnitude of the induced emf at t = 4.00 s. mV(c) At what time is the emf zero? sarrow_forward
- The current in a 60.0-mH inductor changes with time as I = 3.00t2 − 8.00t, where I is in amperes and t is in seconds. (a) Find the magnitude of the induced emf at t = 1.00 s. (b) Find the magnitude of the induced emf at t = 4.00 s. (c) At what time is the emf zero?arrow_forwardThe current in a 70.0-mH inductor changes with time as I = 3.00t2 − 8.00t, where I is in amperes and t is in seconds. (a) Find the magnitude of the induced emf at t = 1.00 s. mV(b) Find the magnitude of the induced emf at t = 4.00 s. mV(c) At what time is the emf zero? sarrow_forwardPlease box answers.arrow_forward
- The time variation of the current in a 32.0-mH inductor is given by I = 9.00 + 3.00t − 3.00t2, with I in amperes and t in seconds. What is the magnitude of the emf induced in the inductor at the following? (a) t = 2.00 s V(b) t = 5.00 s V(c) For what value of t is the emf induced in the inductor 0? sarrow_forwardA 15.0-mH inductor carries a current i = Imax sin ?t, with Imax = 5.40 A and f = ?/2? = 60.0 Hz. What is the self-induced emf as a function of time? (Express your answer in terms of t where is in volts and t is in seconds. Do not include units in your expression.)arrow_forwardAt tt = 0, the current through a 45.0-mH inductor is 54.0 mA and is increasing at the rate of 111 mA/sm. What is the initial energy stored in the inductor? How long does it take for the energy to increase by a factor of 5.0 from the initial value?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning