Essential University Physics: Volume 2 (3rd Edition)
3rd Edition
ISBN: 9780321976420
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 31, Problem 47P
A lens has focal length f = 35 cm. Find the type and height of the image produced when a 2.2-cm-high object is placed at distances (a) f + 10 cm and (b) f − 10 cm.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A convex lens of focal length 21 cm has an object located of height
19.8 cm on its principal axis, 42.9 cm from the vertical axis of the
lens. What is the height of the image produced (in cm)? Your
answer must have at least 4 decimal places and be within 1% of the
correct value.
Please Asap
A transparent photographic slide is placed in front of a converging lens with a focal length of 2.33 cm. An image of the slide is formed 11.4 cm from the slide.
(a) How far is the lens from the slide if the image is real? (Enter your answers from smallest to largest starting with the first answer blank. Enter NONE in any remaining answer blanks.)
Enter a number. cm
cm
(b) How far is the lens from the slide if the image is virtual? (Enter your answers from smallest to largest starting with the first answer blank. Enter NONE in any remaining answer blanks.)
cm
cm
Chapter 31 Solutions
Essential University Physics: Volume 2 (3rd Edition)
Ch. 31.1 - You stand in front of a plane mirror whose top is...Ch. 31.1 - Where would you place an object so that its real...Ch. 31.2 - Prob. 31.3GICh. 31.3 - A thin lens has focal length +50 cm. Which of the...Ch. 31.4 - If you look backward through a refracting...Ch. 31 - How can you see a virtual image, when its not...Ch. 31 - Under what circumstances will the image in a...Ch. 31 - If you're handed a converging lens, what can you...Ch. 31 - A diverging lens always makes a reduced image....Ch. 31 - Is there any limit to the temperature you can...
Ch. 31 - Can a concave mirror make a reduced real image? A...Ch. 31 - If you placed a screen at the location of a...Ch. 31 - If you look into the bowl of a metal spoon, you...Ch. 31 - Is the image on a movie screen real or virtual?...Ch. 31 - Does a fish in a spherical bowl appear larger or...Ch. 31 - A block of ice contains a hollow, air-filled space...Ch. 31 - The refractive index of the human cornea is about...Ch. 31 - Do you want a long or short focal length for a...Ch. 31 - Prob. 14FTDCh. 31 - A shoe store uses small floor-level mirrors to let...Ch. 31 - A candle is on the axis of a 15-cm-focal-length...Ch. 31 - Prob. 17ECh. 31 - A virtual image is located 40cm behind a concave...Ch. 31 - (a) Where on the axis of a concave mirror would...Ch. 31 - A lightbulb is 56 cm from a convex lens. Its image...Ch. 31 - By what factor is the image magnified for an...Ch. 31 - A lens with 50-cm focal length produces a real...Ch. 31 - By holding a magnifying glass 25 cm from your desk...Ch. 31 - A real image is four times as far from a lens as...Ch. 31 - A magnifying glass enlarges print by 50% when its...Ch. 31 - Youre writing specifications for a new line of...Ch. 31 - You're standing in a wading pool and your feet...Ch. 31 - The bottom of a swimming pool looks to be 1.5 m...Ch. 31 - Prob. 29ECh. 31 - Prob. 30ECh. 31 - You have to hold a book 55 cm from your eyes for...Ch. 31 - What focal length should you specify if you want a...Ch. 31 - Youre an optometrist helping a nearsighted patient...Ch. 31 - A particular eye has a focal length of 2.0 cm...Ch. 31 - A compound microscope has objective and eyepiece...Ch. 31 - (a) Find the focal length of a concave mirror if...Ch. 31 - A 12-mm-high object is 10cm from a concave mirror...Ch. 31 - Repeat Problem 37 for a convex mirror, assuming...Ch. 31 - An objects image in a 27-cm-focal-length concave...Ch. 31 - Youre asked to design a concave mirror that will...Ch. 31 - Viewed from Earth, the Moon subtends an angle of...Ch. 31 - At what two distances could you place an object...Ch. 31 - LCD projectors commonly used for computer and...Ch. 31 - An object 15 cm from a concave mirror has a...Ch. 31 - How far from a page should you hold a lens with...Ch. 31 - A converging lens has focal length 4.0 cm. A...Ch. 31 - A lens has focal length f = 35 cm. Find the type...Ch. 31 - How far apart are the object and image produced by...Ch. 31 - A candle and a screen are 70cm apart. Find two...Ch. 31 - Prob. 50PCh. 31 - How far from a 25-cm-focal-length lens should you...Ch. 31 - An object and its lens-produced real image are 2.4...Ch. 31 - An object is 68 cm from a plano-convex lens whose...Ch. 31 - Prob. 54PCh. 31 - Rework Example 31.4 for a fish 15.0 cm from the...Ch. 31 - Prob. 56PCh. 31 - Prob. 57PCh. 31 - A contact lens is in the shape of a convex...Ch. 31 - For what refractive index would the focal length...Ch. 31 - An object is 28 cm from a double-convex lens with...Ch. 31 - Youre an optician whos been asked to design a new...Ch. 31 - A double-convex lens with equal 28.5-cm curvature...Ch. 31 - An object placed 17.5 cm from a convex lens of...Ch. 31 - Youre taking a photography class, working with a...Ch. 31 - A camera can normally focus as close as 60cm, but...Ch. 31 - A 300-power compound microscope has a...Ch. 31 - To the unaided eye, Jupiter has an angular...Ch. 31 - A Cassegrain telescope like that shown in Fig....Ch. 31 - You stand with your nose 6.0 cm from the surface...Ch. 31 - A contact lens prescription calls for...Ch. 31 - Show that placing a 1-diopter lens in front of a...Ch. 31 - Derive an expression for the thickness t of a...Ch. 31 - Show that identical objects placed equal distances...Ch. 31 - Generalize the derivation of the lensmakers...Ch. 31 - Draw a diagram like Fig. 31.10, but showing a ray...Ch. 31 - Galileos first telescope used the arrangement...Ch. 31 - The maximum magnification of a simple magnifier...Ch. 31 - Chromatic aberration results from variation of the...Ch. 31 - For visible wavelengths, the refractive index of...Ch. 31 - The table below shows measurements of...Ch. 31 - Zooming your camera's lens for telephoto shots...Ch. 31 - Increasing the f-ratio from 2.8 to 5.6 a....Ch. 31 - Youre given two lenses with different diameters....Ch. 31 - If a lens suffers from spherical aberration,...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Nichrome wire is used in some radiative heaters. (a) Find the resistance needed if the average power output is ...
College Physics
35. A 1.0-cm-tall object is 60 cm in front of a diverging lens that has a –30 cm focal length.
College Physics: A Strategic Approach (4th Edition)
2. Julie drives 100 mi to Grandmother’s house. On the way to Grandmother’s, Julie drives half the distance at 4...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
If acceleration is proportional to the net force or is equal to net force.
Conceptual Physics (12th Edition)
Rooms A and B are the same size, and are connected by an open door. Room A, however, is warmer (perhaps because...
An Introduction to Thermal Physics
The height of the girl from water when she let go off the rope.
Physics (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A converging lens made of crown glass has a focal length of 15.0 cm when used in air. If the lens is immersed in water, what is its focal length? (a) negative (b) less than 15.0 cm (c) equal to 15.0 cm (d) greater than 15.0 cm (e) none of those answersarrow_forwardA lamp of height S cm is placed 40 cm in front of a converging lens of focal length 20 cm. There is a plane mirror 15 cm behind the lens. Where would you find the image when you look in the mirror?arrow_forwardIn Figure P26.38, a thin converging lens of focal length 14.0 cm forms an image of the square abcd, which is hc = hb = 10.0 cm high and lies between distances of pd = 20.0 cm and pa = 30.0 cm from the lens. Let a, b, c, and d represent the respective corners of the image. Let qa represent the image distance for points a and b, qd represent the image distance for points c and d, hb represent the distance from point b to the axis, and hc represent the height of c. (a) Find qa, qd, hb, and hc. (b) Make a sketch of the image. (c) The area of the object is 100 cm2. By carrying out the following steps, you will evaluate the area of the image. Let q represent the image distance of any point between a and d, for which the object distance is p. Let h represent the distance from the axis to the point at the edge of the image between b and c at image distance q. Demonstrate that h=10.0q(114.01q) where h and q are in centimeters. (d) Explain why the geometric area of the image is given by qaqdhdq (e) Carry out the integration to find the area of the image. Figure P26.38arrow_forward
- What is the magnification of a magnifying lens with a focal length of 10 cm if it is held 3.0 cm from the eye and the object is 12 cm from the eye?arrow_forwardYou view an object by holding a 2.5 cm-focal length magnifying glass 10 cm away from it. How far from your eye should you hold the magnifying glass to obtain a magnification of 10 ?arrow_forwardHow far should you hold a 2.1 cm-focal length magnifying glass from an object to obtain a magnification of 10 x ? Assume you place your eye 5.0 cm from the magnifying glass.arrow_forward
- The left face of a biconvex lens has a radius of curvature of magnitude 12.0 cm, and the right face has a radius of curvature of magnitude 18.0 cm. The index of refraction of the glass is 1.44. (a) Calculate the focal length of the lens for light incident from the left. (b) What If? After the lens is turned around to interchange the radii of curvature of the two faces, calculate the focal length of the lens for light incident from the left.arrow_forwardTwo stars that are 109km apart are viewed by a telescope and found to be separated by an angle of 105 radians. If the eyepiece of the telescope has a focal length of 1.5 cm and the objective has a focal length of 3 meters, how far away are the stars from the observer?arrow_forwardIn Figure P35.30, a thin converging lens of focal length 14.0 cm forms an image of the square abed, which is he = hb = 10.0 cm high and lies between distances of pd = 20.0 cm and pa = 30.0 cm from the lens. Let a, b, c. and d represent the respective corners of the image. Let qa represent the image distance for points a and b, qd represent the image distance for points c and d, hb, represent the distance from point b to the axis, and hc represent the height of c. (a) Find qa, qd, hb, and hc. (b) Make a sketch of the image. (c) The area of the object is 100 cm2. By carrying out the following steps, you will evaluate the area of the image. Let q represent the image distance of any point between a and d, for which the object distance is p. Let h represent the distance from the axis to the point at the edge of the image between b and c at image distance q. Demonstrate that h=10.0q(114.01q) where h and q are in centimeters. (d) Explain why the geometric area of the image is given by qaqdhdq (e) Carry out the integration to find the area of the image. Figure P35.30arrow_forward
- Two thin lenses of focal lengths f1 = 15.0 and f2 = 10.0 cm, respectively, are separated by 35.0 cm along a common axis. The f1 lens is located to the left of the f2 lens. An object is now placed 50.0 cm to the left of the f1 lens, and a final image due to light passing though both lenses forms. By what factor is the final image different in size from the object? (a) 0.600 (b) 1.20 (c) 2.40 (d) 3.60 (e) none of those answersarrow_forwardWhat is the focal length of a magnifying glass that produces a magnification of 3.00 when held 5.00 cm from an object, such as a rare coin?arrow_forwardAn object viewed with the naked eye subtends a 2° angle. If you view the object through a 10 x magnifying glass, what angle is subtended by the image formed on your retina?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY