College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 31, Problem 26CQ
A physics student caught breaking conservation laws is imprisoned. She leans against the cell wall hoping to tunnel out
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The treatment of electrons in atoms must be a quantum treatment, but classical physics still works for baseballs. Where is the dividing line? Suppose we consider a spherical virus, with a diameter of 30 nm, constrained to exist in a long, narrow cell of length 1.0 μm. If we treat the virus as a particle in a box, what is the lowest energy level? Is a quantum treatment necessary for the motion of the virus?
Please asap
As computer structures get smaller and smaller, quantum rules start to create difficulties. Suppose electrons move through a channel in a microprocessor. If we know that an electron is somewhere along the 50 nm length of the channel, what is Δνx? If we treat the electron as a classical particle moving at a speed at the outer edge of the uncertainty range, how long would it take to traverse the channel?
Chapter 31 Solutions
College Physics
Ch. 31 - Suppose the range for 5.0 MeVa ray is known to be...Ch. 31 - What is the difference between (rays and...Ch. 31 - Ionizing radiation interacts with matter by...Ch. 31 - What characteristics of radioactivity show it to...Ch. 31 - What is the source of the energy emitted in...Ch. 31 - Consider Figure 31.3. If an electric field is...Ch. 31 - Explain how an (particle can have a larger range...Ch. 31 - Arrange the following according to their ability...Ch. 31 - Often, when people have to work around radioactive...Ch. 31 - Is it possible for light emitted by a scintillator...
Ch. 31 - The weak and strong nuclear forces are basic to...Ch. 31 - Define and make clear distinctions between the...Ch. 31 - What are isotopes? Why do different isotopes of...Ch. 31 - Star Trek fans have often heard the term...Ch. 31 - What conservation law requires an electron’s...Ch. 31 - Neutrinos are experimentally determined to have an...Ch. 31 - What do the three types of beta decay have in...Ch. 31 - In a 3109 yearold rock that originally contained...Ch. 31 - Does the number of radioactive nuclei in a sample...Ch. 31 - Radioactivity depends on the nucleus and not the...Ch. 31 - Explain how a bound system can have less mass than...Ch. 31 - Spontaneous radioactive decay occurs only when the...Ch. 31 - To obtain the most precise value of BE from the...Ch. 31 - How does the finite range of the nuclear force...Ch. 31 - Why is the number of neutrons greater than the...Ch. 31 - A physics student caught breaking conservation...Ch. 31 - When a nucleus (decays, does the (particle move...Ch. 31 - The energy of 30.0 eV is required to ionize a...Ch. 31 - A particle of ionizing radiation creates 4000 ion...Ch. 31 - (a) Repeat Exercise 31.2, and convert the energy...Ch. 31 - Suppose a particle of ionizing radiation deposits...Ch. 31 - Verify that a 2.31017kg mass of water at normal...Ch. 31 - Find the length of a side of a cube having a mass...Ch. 31 - What is the radius of an (particle?Ch. 31 - Find the radius of a 238Pu nucleus. 238Pu is a...Ch. 31 - (a) Calculate the radius of 58Ni, one of the most...Ch. 31 - The unified atomic mass unit is defined to be...Ch. 31 - What is the ratio of the velocity of a (particle...Ch. 31 - If a 1.50cmthick piece of lead can absorb 90.0% of...Ch. 31 - The detail observable using a probe is limited by...Ch. 31 - (a) Show that if you assume the average nucleus is...Ch. 31 - What is the radio of the velocity of a 5.00MeV...Ch. 31 - (a) What is the kinetic energy in MeV of a ray...Ch. 31 - In the following eight problems, write the...Ch. 31 - In the following eight problems, write the...Ch. 31 - In the following eight problems, write the...Ch. 31 - In the following eight problems, write the...Ch. 31 - In the following eight problems, write the...Ch. 31 - In the following eight problems, write the...Ch. 31 - In the following eight problems, write the...Ch. 31 - In the following eight problems, write the...Ch. 31 - decay producing 137Ba. The parent nuclide is a...Ch. 31 - ( decay producing 90Y. The parent nuclide is a...Ch. 31 - decay producing 228Ra. The parent nuclide is...Ch. 31 - decay producing 208Pb. The parent nuclide is in...Ch. 31 - When an electron and position annihilate, both...Ch. 31 - Confirm That charge, electron family number, and...Ch. 31 - Confirm that charge, electron family number, and...Ch. 31 - Confirm that charge, electron family number, and...Ch. 31 - Confirm that charge, electron family number, and...Ch. 31 - A rare decay mode has been observed in which 222Ra...Ch. 31 - (a) Write the complete a decay equation for 226Ra....Ch. 31 - (a) Write the complete a decay equation for 249Cf....Ch. 31 - (a) Write the complete decay equation for the...Ch. 31 - (a) Write the complete decay equation for 90Sr,...Ch. 31 - Calculate the energy released in the + decay of...Ch. 31 - (a) Write the complete + decay equation for llC....Ch. 31 - (a) Calculate the energy released in the a decay...Ch. 31 - (a) Write the complete reaction equation for...Ch. 31 - (a) Write the complete reaction equation for...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - 2H is a loosely hound isotope of hydrogen. Called...Ch. 31 - 56Feis among the most tightly bound of all...Ch. 31 - 209Bi is the heaviest stable nuclide, and its BE/A...Ch. 31 - (a) Calculate BE/A for 235U, the rarer of the two...Ch. 31 - (a) Calculate BE/A for 12C. Stable and relatively...Ch. 31 - The fact that BE/A is greatest for A near 60...Ch. 31 - The purpose of this problem is to show in three...Ch. 31 - Unreasonable Results A particle physicist...Ch. 31 - Derive an approximate relationship between the...Ch. 31 - Integrated Concepts A 2.00T magnetic ?eld is...Ch. 31 - (a) Write the decay equation for the decay of...Ch. 31 - Unreasonable Results The relatively scarce...Ch. 31 - Unreasonable Results A physicist scatters (rays...Ch. 31 - Unreasonable Results A frazzled theoretical...Ch. 31 - Construct Your Own Problem Consider the decay of...
Additional Science Textbook Solutions
Find more solutions based on key concepts
TEST YOUR UNDERSTANDING OF SECTION 9.1 The figure shows a graph of ?z and ?z versus time for a particular rotat...
University Physics with Modern Physics (14th Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
A second experiment is performed in which glider D is fixed in place. Glider C is launched toward glider D with...
Tutorials in Introductory Physics
1. When is energy most evident?
Conceptual Physics (12th Edition)
The proton is a composite particle composed of three quarks, all of which are either up quarks (u; charge +23e)...
Essential University Physics: Volume 2 (3rd Edition)
1. An object is subject to two forces that do not point in opposite directions. Is it possible to choose their ...
College Physics: A Strategic Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An electron trapped in a one-dimensional infinitely deep potential well with a width of 250 pm is excited from the first excited state to the third excited state. What energy must the electron acquire for this quantum jump to occur? The electron then emits a photon and transitions to the ground state. Determine the wavelength and momentum of the emitted photon.arrow_forwardA two-level quantum system has two non-degenerate energy levels ?0 = 0 meV and ?1 = 1 meV. Calculate the average energy of the two-level quantum system.arrow_forwardQuantum mechanical tunnelling enables chemical reactions to proceed that would be energetically impossible in classical mechanics. Assume that hydrogen (H) and tritium (T) atoms, each with a kinetic energy of 0.9 eV, encounter a potential barrier that is 1.0 eV high and 100 pm broad. Calculate the ratio of probabilities for transmission of the H and T atoms through the barrier. Note: the masses of H and T atoms are 1.674 x 10-27 kg and 5.008 x 10-27 kg, respectively, and 1 eV=1.602x10-19 J.arrow_forward
- For a particle in a box, what would the probability distribution function Ic I2 look like if the particle behaved like a classical (Newtonian) particle? Do the actual probability distributions approach this classical form when n is very large? Explain.arrow_forwardDo you think it is reasonable to describe the Schrodinger equation as a postulate of quantum mechanics? What is a postulate?arrow_forwardWhen you solve Schrodinger equation for your system you'll finally get well defined energy levels with no uncertainty related to them. Isn't it a contradiction to universal uncertainty principle? How do you explain this ( use appropriate equations)?arrow_forward
- In the context of quantum mechanics, consider a particle confined within a one- dimensional potential well. Describe how the energy levels and wave functions of the particle change as the width of the well is varied. Discuss the implications of these changes on the behavior of the particle and how they relate to the principles of quantum mechanics.arrow_forward7arrow_forwardIt's a quantum mechanics question.arrow_forward
- (a) Calculate the minimum uncertainty in momentum (expressed in MeV/?) for a proton confined to a nucleus of diameter 5.0 fm. (1 fm = 1 * 10-15 m). (b) A proton (rest mass 938.3 MeV/?2) in a nucleus of radius 6.0 fm has a kinetic energy of 5.6 MeV. If the proton were represented by a de Broglie wave, how many wavelengths could fit across the diameter of that nucleus? (1 fm = 1 * 10-15 m). (c) Electrons (rest mass 0.51 MeV/?2) moving with a speed of 1.60 × 105 m/s are described by a wave packet of width 2.65 nm. What range of values will most likely result from a measurement of the speed of the electrons? Please use:ℎ? 1240 eVnmℏ? 197 eVnmarrow_forwardA ball of mass 1 g, confined to a one-dimensional box of length 0.1 m, moves with a velocity of 0.01 ms-1. Calculate the quantum number n. Is it possible to observe the quantization of energylevels of the ball?arrow_forwardUse the uncertainty principle to show that if an electron were confined inside an atomic nucleus of diameter 2 x 10-15 m, it would have to be moving relativistically, whereas a proton confined to the same nucleus can be moving nonrelativistically.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning