FUND PHYS 10TH EXT WILEY PLUS
10th Edition
ISBN: 9781119500100
Author: Halliday
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 90P
To determine
To find:
The time required for the current to decay to 10% of its initial value.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How long would it take, following the removal of the battery, for the potential difference across the resistor in an RL circuit (with L = 2.00 H, R = 3.00 ohm) to decay to 10.0% of its initial value?
Consider a series RL circuit with a battery. The battery has been
disconnected for a long time, and then it is reconnected at time t = 0.
(a) What is the current after a long time?
(b) What is the current at time t?
R = 6.6 ohm;
L = 2.7 H;
V = 24.2 V; t₂ = 0.429 s.
(a)
(b; current at time t = t₂)
The figure shows an LR circuit with L = 0.15 H, R = 25 Ω, and Vo = 36 V. The switch is initially open. Eight milliseconds (t = 8 ms) after the switch is closed, what is the current in the circuit and the potential difference between points a and b, Vab ?
Chapter 30 Solutions
FUND PHYS 10TH EXT WILEY PLUS
Ch. 30 - If the circular conductor in Fig. 30-21 undergoes...Ch. 30 - Prob. 2QCh. 30 - Prob. 3QCh. 30 - Prob. 4QCh. 30 - Prob. 5QCh. 30 - Prob. 6QCh. 30 - Prob. 7QCh. 30 - Prob. 8QCh. 30 - Prob. 9QCh. 30 - Prob. 10Q
Ch. 30 - Figure 30-31 shows three situations in which a...Ch. 30 - Figure 30-32 gives four situations in which we...Ch. 30 - Prob. 1PCh. 30 - A certain elastic conducting material is stretched...Ch. 30 - Prob. 3PCh. 30 - A wire loop of radius 12 cm and resistance 8.5 is...Ch. 30 - Prob. 5PCh. 30 - Figure 30-37a shows a circuit consisting of an...Ch. 30 - In Fig. 30-38, the magnetic flux through the loop...Ch. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - Prob. 10PCh. 30 - A rectangular coil of N turns and of length a and...Ch. 30 - Prob. 12PCh. 30 - Prob. 13PCh. 30 - GO In Fig. 30-42a, a uniform magnetic field B...Ch. 30 - GO A square wire loop with 2.00 m sides is...Ch. 30 - GO Figure 30-44a shows a wire that forms a...Ch. 30 - A small circular loop of area 2.00 cm2 is placed...Ch. 30 - Prob. 18PCh. 30 - ILW An electric generator contains a coil of 100...Ch. 30 - At a certain place, Earths magnetic field has...Ch. 30 - Prob. 21PCh. 30 - A rectangular loop area = 0.15 m2 turns in a...Ch. 30 - SSM Figure 30-47 shows two parallel loops of wire...Ch. 30 - Prob. 24PCh. 30 - GO Two long, parallel copper wires of diameter 2.5...Ch. 30 - GO For the wire arrangement in Fig. 30-49, a =...Ch. 30 - ILW As seen in Fig. 30-50, a square loop of wire...Ch. 30 - Prob. 28PCh. 30 - Prob. 29PCh. 30 - Prob. 30PCh. 30 - Prob. 31PCh. 30 - A loop antenna of area 2.00 cm2 and resistance...Ch. 30 - GO Figure 30-54 shows a rod of length L = 10.0 cm...Ch. 30 - Prob. 34PCh. 30 - Prob. 35PCh. 30 - Prob. 36PCh. 30 - Prob. 37PCh. 30 - Prob. 38PCh. 30 - Prob. 39PCh. 30 - Prob. 40PCh. 30 - A circular coil has a 10.0 cm radius and consists...Ch. 30 - Prob. 42PCh. 30 - Prob. 43PCh. 30 - Prob. 44PCh. 30 - Prob. 45PCh. 30 - Prob. 46PCh. 30 - Inductors in series. Two inductors L1 and L2 are...Ch. 30 - Prob. 48PCh. 30 - Prob. 49PCh. 30 - Prob. 50PCh. 30 - ILW The current in an RL circuit drops from 1.0 A...Ch. 30 - Prob. 52PCh. 30 - Prob. 53PCh. 30 - Prob. 54PCh. 30 - Prob. 55PCh. 30 - Prob. 56PCh. 30 - In Fig. 30-65, R = 15 , L = 5.0 H, the ideal...Ch. 30 - Prob. 58PCh. 30 - Prob. 59PCh. 30 - Prob. 60PCh. 30 - Prob. 61PCh. 30 - A coil with an inductance of 2.0 H and a...Ch. 30 - Prob. 63PCh. 30 - Prob. 64PCh. 30 - Prob. 65PCh. 30 - A circular loop of wire 50 mm in radius carries a...Ch. 30 - Prob. 67PCh. 30 - Prob. 68PCh. 30 - ILW What must be the magnitude of a uniform...Ch. 30 - Prob. 70PCh. 30 - Prob. 71PCh. 30 - Prob. 72PCh. 30 - Prob. 73PCh. 30 - Prob. 74PCh. 30 - Prob. 75PCh. 30 - Prob. 76PCh. 30 - Prob. 77PCh. 30 - Prob. 78PCh. 30 - SSM In Fig. 30-71, the battery is ideal and = 10...Ch. 30 - Prob. 80PCh. 30 - Prob. 81PCh. 30 - A uniform magnetic field B is perpendicular to the...Ch. 30 - Prob. 83PCh. 30 - Prob. 84PCh. 30 - Prob. 85PCh. 30 - Prob. 86PCh. 30 - Prob. 87PCh. 30 - Prob. 88PCh. 30 - A coil with an inductance of 2.0 H and a...Ch. 30 - Prob. 90PCh. 30 - Prob. 91PCh. 30 - Prob. 92PCh. 30 - Prob. 93PCh. 30 - A long cylindrical solenoid with 100 turns/cm has...Ch. 30 - Prob. 95PCh. 30 - A square loop of wire is held in a uniform 0.24 T...Ch. 30 - Prob. 97PCh. 30 - The inductance of a closely wound coil is such...Ch. 30 - The magnetic field in the interstellar space of...Ch. 30 - Prob. 100PCh. 30 - A toroid has a 5.00 cm square cross section, an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the RL circuit in the figure with R=10.00 Ω, L1=1.80 H, L2=3.90 H, and V=5.0 V. At time t=0, the switch is closed to connect the circuit to a constant emf. How long (in seconds) does it take for the current to reach a value of Imax/2.71828 of its maximum value, where Imax is the maximum current through the circuit?arrow_forwardHow much time does it take for the current in an RL circuit withR = 130 Ω and L = 68 mH to reach half its final value?arrow_forwardThe capacitor in the circuit shown below is initially uncharged. The switch is closed at t = 0 s. ΔVbattery = 60 V, C = 2.0 F, and R = 3.0 Ω. What is the current in the circuit immediately after the switch is closed, in Ampere?arrow_forward
- In an A. C. circuit, the flowing current is I = 5 sin (100 t - t/2) A and the potential difference is V = 200 sin (100 t)V. The power consumption is equal to %3Darrow_forwardThe capacitor in the circuit shown below is initially uncharged. The switch is closed at t = 0 s. ΔVbattery = 60 V, C = 2.0 F, and R = 3.0 Ω. What is the current in the circuit at t = 5.2 s, in Ampere?arrow_forwardThe capacitor in the circuit shown below is initially uncharged. The switch is closed at t = 0 s. ΔVbattery = 60 V, C = 2.0 F, and R = 3.0 Ω. What is the current in the circuit immediately after the switch is closed, in Ampere?arrow_forward
- The battery terminal voltage in the figure below is E = 8.30 V and the current I reaches half its maximum value of 5.00 A at t = 0.200 s after the switch is closed. HINT S + E S Apply the expression for the current in an RL circuit. V R (a) Calculate the time constant 7 (in s). V ele Click the hint button again to remove this hint. (b) What is the potential difference (in V) across the inductor at t = 0.200 s? (c) What is the potential difference (in V) across the inductor in the instant after the switch is closed at t = 0?arrow_forwardThe I vs t graph shown below is for an LR circuit without a battery. I (A) 14/ 10.5 7. 3.5 1.5 3. 4.5 6. 7.5 t(s) Determine the time constant of the LR circuit. T = If L = 10 H, determine R. R = er resistors from highest to lowarrow_forwardA circuit conducting loop lies in the xy-plane as shown. The loop has a radius of 0.2 m and resistance R = 4 Ω. If B = 40 sin 104 taz mWb/m2, find the currrent.arrow_forward
- The I vs t graph shown below is for an LR circuit with a battery. 1(A) 3. 2 1. 9 18 27 36 45 54 63 72 81 90 t(s) Determine the time constant of the LR circuit. TH If L9 H, determine R. R = Ω MYarrow_forwardTime t < 0, the circuit is in DC Steady State. The switch is opened instantly at time t=0. When t<0, I₂ = 7 A, and I₃ = 9 A. R₁ = 5 Ω, R₂ = 4 Ω, and R₃ = 4 Ω. The solution for I₂ is I2 = I 0 e^ − R t / L. With several resistors in the circuit, the question is, what resistance do we use for R? Answer this question (in Ohms).arrow_forwardQuestion 1 For the given circuit below, determine the current ic(1) for t >0 assuming the switch has been closed for a long time before it is opened at time t = 0. 2023 4Ω www 222 www 30 V -0- 4 H m ic 120 0.64 FDC 1=0,arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you