FUND PHYS 10TH EXT WILEY PLUS
10th Edition
ISBN: 9781119500100
Author: Halliday
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 54P
To determine
To find:
a) Current
b) Current
c) Current
d) Current
e) Current
f) Current
g) Current
h) Current
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
In the figure, ɛ = 78.1 V, Rị = 14.4 N, R2
2.91 H. Immediately after switch S is closed, what are (a) i and (b) iz?
(Let currents in the indicated directions have positive values and currents
in the opposite directions have negative values.) A long time later, what
= 16.7 N, R3 = 39.3 N, and L =
%3D
In the figure, & = 134 V, R₁ = 8.500, R₂ = 17.602, R3 = 26.4 02, and L = 2.14 H. Immediately after switch S is closed, what are (a) i₁ and (b)
i2? (Let currents in the indicated directions have positive values and currents in the opposite directions have negative values.) A long
time later, what are (c) i₁ and (d) i₂? The switch is then reopened. Just then, what are (e) i and (f) i2? A long time later, what are (g) i₁ and
(h) i₂?
(a) Number
(b) Number i
(c) Number
(d) Number
i
(e) Number
i
=8
Units
Units
Units
Units
S
Units
R₁
i₂ {R₂
>
>
W
R₁
>
ele
In the figure, e = 94.8 V, R1 = 7.80 Q, R2 = 27.0 Q, R3 = 30.7 N, and L = 1.65 H. Immediately after switch S is closed, what are (a) iz and (b)
iz? (Let currents in the indicated directions have positive values and currents in the opposite directions have negative values.) A long
time later, what are (c) iz and (d) iz? The switch is then reopened. Just then, what are (e) i, and (f) i2? A long time later, what are (g) iz and
(h) i2?
R1
Rs
3,
Ra
L.
ll
ww
Chapter 30 Solutions
FUND PHYS 10TH EXT WILEY PLUS
Ch. 30 - If the circular conductor in Fig. 30-21 undergoes...Ch. 30 - Prob. 2QCh. 30 - Prob. 3QCh. 30 - Prob. 4QCh. 30 - Prob. 5QCh. 30 - Prob. 6QCh. 30 - Prob. 7QCh. 30 - Prob. 8QCh. 30 - Prob. 9QCh. 30 - Prob. 10Q
Ch. 30 - Figure 30-31 shows three situations in which a...Ch. 30 - Figure 30-32 gives four situations in which we...Ch. 30 - Prob. 1PCh. 30 - A certain elastic conducting material is stretched...Ch. 30 - Prob. 3PCh. 30 - A wire loop of radius 12 cm and resistance 8.5 is...Ch. 30 - Prob. 5PCh. 30 - Figure 30-37a shows a circuit consisting of an...Ch. 30 - In Fig. 30-38, the magnetic flux through the loop...Ch. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - Prob. 10PCh. 30 - A rectangular coil of N turns and of length a and...Ch. 30 - Prob. 12PCh. 30 - Prob. 13PCh. 30 - GO In Fig. 30-42a, a uniform magnetic field B...Ch. 30 - GO A square wire loop with 2.00 m sides is...Ch. 30 - GO Figure 30-44a shows a wire that forms a...Ch. 30 - A small circular loop of area 2.00 cm2 is placed...Ch. 30 - Prob. 18PCh. 30 - ILW An electric generator contains a coil of 100...Ch. 30 - At a certain place, Earths magnetic field has...Ch. 30 - Prob. 21PCh. 30 - A rectangular loop area = 0.15 m2 turns in a...Ch. 30 - SSM Figure 30-47 shows two parallel loops of wire...Ch. 30 - Prob. 24PCh. 30 - GO Two long, parallel copper wires of diameter 2.5...Ch. 30 - GO For the wire arrangement in Fig. 30-49, a =...Ch. 30 - ILW As seen in Fig. 30-50, a square loop of wire...Ch. 30 - Prob. 28PCh. 30 - Prob. 29PCh. 30 - Prob. 30PCh. 30 - Prob. 31PCh. 30 - A loop antenna of area 2.00 cm2 and resistance...Ch. 30 - GO Figure 30-54 shows a rod of length L = 10.0 cm...Ch. 30 - Prob. 34PCh. 30 - Prob. 35PCh. 30 - Prob. 36PCh. 30 - Prob. 37PCh. 30 - Prob. 38PCh. 30 - Prob. 39PCh. 30 - Prob. 40PCh. 30 - A circular coil has a 10.0 cm radius and consists...Ch. 30 - Prob. 42PCh. 30 - Prob. 43PCh. 30 - Prob. 44PCh. 30 - Prob. 45PCh. 30 - Prob. 46PCh. 30 - Inductors in series. Two inductors L1 and L2 are...Ch. 30 - Prob. 48PCh. 30 - Prob. 49PCh. 30 - Prob. 50PCh. 30 - ILW The current in an RL circuit drops from 1.0 A...Ch. 30 - Prob. 52PCh. 30 - Prob. 53PCh. 30 - Prob. 54PCh. 30 - Prob. 55PCh. 30 - Prob. 56PCh. 30 - In Fig. 30-65, R = 15 , L = 5.0 H, the ideal...Ch. 30 - Prob. 58PCh. 30 - Prob. 59PCh. 30 - Prob. 60PCh. 30 - Prob. 61PCh. 30 - A coil with an inductance of 2.0 H and a...Ch. 30 - Prob. 63PCh. 30 - Prob. 64PCh. 30 - Prob. 65PCh. 30 - A circular loop of wire 50 mm in radius carries a...Ch. 30 - Prob. 67PCh. 30 - Prob. 68PCh. 30 - ILW What must be the magnitude of a uniform...Ch. 30 - Prob. 70PCh. 30 - Prob. 71PCh. 30 - Prob. 72PCh. 30 - Prob. 73PCh. 30 - Prob. 74PCh. 30 - Prob. 75PCh. 30 - Prob. 76PCh. 30 - Prob. 77PCh. 30 - Prob. 78PCh. 30 - SSM In Fig. 30-71, the battery is ideal and = 10...Ch. 30 - Prob. 80PCh. 30 - Prob. 81PCh. 30 - A uniform magnetic field B is perpendicular to the...Ch. 30 - Prob. 83PCh. 30 - Prob. 84PCh. 30 - Prob. 85PCh. 30 - Prob. 86PCh. 30 - Prob. 87PCh. 30 - Prob. 88PCh. 30 - A coil with an inductance of 2.0 H and a...Ch. 30 - Prob. 90PCh. 30 - Prob. 91PCh. 30 - Prob. 92PCh. 30 - Prob. 93PCh. 30 - A long cylindrical solenoid with 100 turns/cm has...Ch. 30 - Prob. 95PCh. 30 - A square loop of wire is held in a uniform 0.24 T...Ch. 30 - Prob. 97PCh. 30 - The inductance of a closely wound coil is such...Ch. 30 - The magnetic field in the interstellar space of...Ch. 30 - Prob. 100PCh. 30 - A toroid has a 5.00 cm square cross section, an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Q18arrow_forwardIn circuit shown below, ε = 12 V, L = 100 mH, R₁ = 1 k and R₂ = 2 k. What is the current through the battery long time after the switch S has been closed? S R₂ ww E 200 mA ○ 6 mA ○ 4 mA ○ 12 mA ○ 18 mA ○ 100 mA ww R1 0000arrow_forwardIn the figure, 8 = 149 V, R₁ = 12.10, R₂ =29.70, R3 = 28.8 2, and L = 1.97 H. Immediately after switch S is closed, what are (a) i₁ and (b) i2? (Let currents in the indicated directions have positive values and currents in the opposite directions have negative values.) A long time later, what are (c) i₁ and (d) i2? The switch is then reopened. Just then, what are (e) i₁ and (f) i2? A long time later, what are (g) i₁ and (h) i₂? (a) Number i (b) Number (c) Number i (d) Number i Units Units Units Units 8 iz↓ > R₂ R₁₂arrow_forward
- In the figure, & = 111 V. R₁ = 9.83 0, R₂ = 27.80, R3 = 28.80, and L = 2.92 H. Immediately after switch 5 is closed, what are (a)i₁ and (b) i₂? (Let currents in the indicated directions have positive values and currents in the opposite directions have negative values.) A long time later, what are (c) i₁ and (d) i₂? The switch is then reopened. Just then, what are (e) i₁ and (f) i₂? A long time later, what are (g) 1₁ and (h) i₂? (a) Number i (b) Number i (c) Number (d) Number (e) Number i (f) Number i (g) Number i (h) Number i Units Units Units Units Units Units Units Units 8 ww www R₂ ele Larrow_forward59 In Fig. 27-51, R₁ = 20.0 2, R₂ = 10.0 2, and the ideal bat- tery has emf & = 120 V. What is the current at point a if we close (a) only switch S₁, (b) only switches S₁ and S₂, and (c) all three switches? Figure 27-51 Problem 59. a S₁ S₂ S3 18 R₁ R₁ R₁ I'm LwIw Im R₁ R₂ R₂arrow_forwardAt t = 0 the switch S is closed with the capacitor uncharged. If C = 30 µF, E = 50 V, and R= 10 k2, what is the potential difference across the capacitor when I= 3 mA?arrow_forward
- C S R In the circuit shown above, let C = 12.31 μF and R = 4.88 M. If the switch is initially open and the voltage on the capacitor is 47.9 V, what will be the voltage on the capacitor after 13.55 s?arrow_forwardThe switch in the given figure has been in position A for a long time. Assume the switch moves instantaneously from A to B at t= 0. Find v for t> 0. Assume R = 4 kN. 5 kΩ Α B 10 μF 40 V R The voltage v(t) v(0) e-1/ , where v(0) V and T= S.arrow_forwardI1, I2, and I3 refer to the currents through R1, R2, and R3. No longer in DC steady state, again ℰ and R₁ are unknown, R₂ = 7 Ω, R₃ = 2 Ω, L = 4 Henrys, I₂ = 10 A, and I₃ = 8 A. Calculate dI₃/dt.arrow_forward
- **57 Go In Fig. 30-63, R = 15 N, L = 5.0 H, the ideal battery has & = 10 V, and the fuse in the upper branch is an ideal 3.0 A fuse. It has Fuse R zero resistance as long as the cur- rent through it remains less than 3.0 L. A. If the current reaches 3.0 A, the fuse “blows" and thereafter has in- finite resistance. Switch S is closed Fig. 30-63 Problem 57. at time t= 0. (a) When does the fuse blow? (Hint: Equation 30-41 does not apply. Rethink Eq. 30-39.) (b) Sketch a graph of the current i through the inductor as a function of time. Mark the time at which the fuse blows.arrow_forwardYou connect a battery, resistor, and capacitor as in (Figure 1), where R = 14.0 Ω and C = 3.00 ×10^-6 F. The switch S is closed at t = 0. When the current in the circuit has magnitude 3.00 A, the charge on the capacitor is 40.0 × 10^−6 C. At what time t after the switch is closed is the charge on the capacitor equal to 40.0 x 10^-6 C? When the current has magnitude 3.00 A, at what rate is energy being stored in the capacitor?arrow_forwardIn the circuit diagram R1 = 1760 Ω, R2 = 3130 Ω, C1 = 2.9 μF, C2 = 5.7 μF, and ℰ = 12 V. The switch is closed at t = 0. What is the current in A from the battery when t = 1.018 seconds?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning