Introduction To Genetic Analysis
12th Edition
ISBN: 9781319114787
Author: Anthony J.F. Griffiths, John Doebley, Catherine Peichel, David A. Wassarman
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 59P
Summary Introduction
To determine: The method of production of yellow many loculed tall pure line.
Introduction. The dominant allele masks the expression of the recessive allele. Therefore the dominant allele is expressed in homozygous and heterozygous genotype while the recessive
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1) S-Tu-U
2) S-U-Tu
3) Tu-S-U
4) U-S-Tu
A farmer obtained pure seed of wheat variety (Galaxy-13) but unfortunately he has mixed it with other varieties in his field while he was planning to use that seed for next year. Being a plant breeder, suggest a method in detail to the farmer, that how he can get the pure seed again from that mixed lot
In a certain plant, the seed traits are as follows:
Color: white (W) is dominant over yellow (w)Shape: disk (D) is dominant over sphere (d)Seed coat: thick (T) is dominant over thin (t)
a) If the parent plant is a triple heterozygote, what is its phenotype?
b)
Analyzing the phenotypes of the offspring, the alleles of the gametes were determined as:
85 wDt 390 WDT 27 WDt 81 WdT5 wDT 374 wdt 30 wdT 8 Wdt
construct a genetic map using the three-point cross.
Chapter 3 Solutions
Introduction To Genetic Analysis
Ch. 3 - Prob. 1PCh. 3 - Prob. 2PCh. 3 - Prob. 3PCh. 3 - Prob. 4PCh. 3 - Prob. 5PCh. 3 - Prob. 6PCh. 3 - Prob. 7PCh. 3 - Prob. 8PCh. 3 - Prob. 9PCh. 3 - Prob. 10P
Ch. 3 - Prob. 11PCh. 3 - Prob. 12PCh. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Prob. 16PCh. 3 - Prob. 17PCh. 3 - Prob. 18PCh. 3 - Prob. 19PCh. 3 - Prob. 20PCh. 3 - Prob. 21PCh. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28PCh. 3 - Prob. 29PCh. 3 - Prob. 30PCh. 3 - Prob. 31PCh. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Prob. 37PCh. 3 - Prob. 38PCh. 3 - Prob. 39PCh. 3 - Prob. 40PCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - Prob. 43.1PCh. 3 - Prob. 43.2PCh. 3 - Prob. 43.3PCh. 3 - Prob. 43.4PCh. 3 - Prob. 43.5PCh. 3 - Prob. 43.6PCh. 3 - Prob. 43.7PCh. 3 - Prob. 43.8PCh. 3 - Prob. 43.9PCh. 3 - Prob. 43.10PCh. 3 - Prob. 43.11PCh. 3 - Prob. 43.12PCh. 3 - Prob. 43.13PCh. 3 - Prob. 43.14PCh. 3 - Prob. 43.15PCh. 3 - Prob. 44PCh. 3 - Prob. 45PCh. 3 - Prob. 46PCh. 3 - Prob. 47PCh. 3 - Prob. 48PCh. 3 - Prob. 49PCh. 3 - Prob. 50PCh. 3 - Prob. 51PCh. 3 - Prob. 52PCh. 3 - Prob. 53PCh. 3 - Prob. 54PCh. 3 - Prob. 55PCh. 3 - Prob. 56PCh. 3 - Prob. 57PCh. 3 - Prob. 58PCh. 3 - Prob. 59PCh. 3 - Prob. 61PCh. 3 - Prob. 62PCh. 3 - Prob. 63PCh. 3 - Prob. 64PCh. 3 - Prob. 65PCh. 3 - Prob. 66PCh. 3 - Prob. 67PCh. 3 - Prob. 70PCh. 3 - Prob. 1GSCh. 3 - Prob. 2GSCh. 3 - Prob. 3GS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- A) Describe the data you collect from the Purple 1 x Purple 2 cross. Predict the genotype of each of the parent plants. Explain your predictions using data from the experiment. (Again, you may need to use data from other crosses!) B) Consider the offspring, the next generation (F1), from the Purple 1 x Purple 2 cross. What is the probability of a green stem plant? How do you know this? C) What is the probability in the F2 generation of a green stem offspring? Use a Punnett square(s) and quantitative data to explain your thinking. Upload your Punnett square(s).arrow_forwardA) Describe the data you collect from the Purple 1 x Purple 2 cross. Predict the genotype of each of the parent plants. Explain your predictions using data from the experiment. B) Consider the offspring, the next generation (F1), from the Purple 1 x Purple 2 cross. What is the probability of a green stem plant? How do you know this? C) What is the probability in the F2 generation of a green stem offspring? Use a Punnett square(s) and quantitative data to explain your thinking. Upload your Punnett square(s).arrow_forwardA snapdragon with pink petals, black anthers, and longstems was allowed to self-fertilize. From the resultingseeds, 650 adult plants were obtained. The phenotypesof these offspring are listed here.78 red long tan26 red short tan44 red long black15 red short black39 pink long tan13 pink short tan204 pink long black68 pink short black5 white long tan2 white short tan117 white long black39 white short blacka. Using P for one allele and p for the other, indicatehow flower color is inherited.b. What numbers of red : pink : white would havebeen expected among these 650 plants?c. How are anther color and stem length inherited?d. What was the genotype of the original plant?e. Do any of the three genes show independentassortment?f. For any genes that are linked, indicate the arrangements of the alleles on the homologous chromosomes in the original snapdragon, and estimate thedistance between the genesarrow_forward
- A horticulturist runs a test cross with an offspring (F1 generation) purple plant from Question 8. The phenotypic frequencies of the resulting offspring are 50% white and 50% purple. What is the true genotype of this offspring (F1 generation) purple plant?arrow_forwardE. W. Lindstrom crossed two corn plants with green seedlings and obtained the following progeny: 3583 green seedlings, 853 virescentwhite seedlings, and 260 yellow seedlings . Q. Give the genotypes for the green, virescent-white, and yellow progeny.arrow_forwardregular (2) are tobed and serrated and potato teaves (4) are broad, smooth, and singte (Image 1). Re. Is dominlant to yellow fruit (). Image 1. Potato leaves (left) and regular leaves (right). A cross is carried out between two pure lines of tomato plants, one having regular leaves and red fruit and the other having potato leaves and yellow fruit. The F1 generation all have regular leaves and red fruit. The F1 individuals are then crossed with one another. Complete a Punnett square to determine the expected F2 progeny on the basis of Mendel's Law of Independent Assortment, which states that the alleles for one gene segregate independently of the alleles for other genes during gamete formation.arrow_forward
- Assume that three loci, each with two alleles (A and a, B and b, C and c), determine the difference in height between two homozygous strains of a plant. These genes are additive and equal in their effects on plant height. One strain (aa bb cc) is 10 cm in height. The other strain (AA BB CC) is 22 cm in height. The two strains are crossed, and the resulting F1 are interbred to produce F2 progeny. Give the phenotypes and the expected proportions of the F2 progeny.arrow_forwardTwo true-breeding varieties of maize, one 11 cm high and the other 47 cm high were crossed and the resultant F1 hybrids were then crossed to generate the F2 . In the F2 there were a total of 13,923 plants with a continuous variation in heights between the two extremes and with only 3 plants as large as 47 cm high and 5 plants of 11 cm high. a) How many i) genes and ii) how many alleles are involved in determining height in this plant?arrow_forwardIf you cross heterozygous spherical (S) yellow (Y) seeded plant with dented(s), green(y) the offsping and the ratio would be: A)F:SsYy, ssyy; ration 1:1B)F: SSYy, Ssyy, ssYy, ssyy; ration 1:1:1:1C)F: SSYy, Ssyy, ssYy,ssyy; ration 1:1:1:1D)F: SsYy, Ssyy, ssYy, ssyy ration 1:1:1:1arrow_forward
- In corn, the allele f ′ causes floury endosperm and the allele f ″ causes flinty endosperm. In the cross f ′/f ′ ×f ″/f ″, all the progeny endosperms are floury, but, in the reciprocal cross, all the progeny endosperms are flinty. What is a possible explanation? (Check the legend for Figure 2-7.)arrow_forwardIn tomatoes, regular leaves (L) are multilobed and serrated and potato leaves (l) are broad, smooth, and single (Image 1). Red fruit (F) is dominant to yellow fruit (f). A cross is carried out between two pure lines of tomato plants, one having regular leaves and red fruit and the other having potato leaves and yellow fruit. The F1 generation all have regular leaves and red fruit. The F1 individuals are then crossed with one another. Complete a Punnett square to determine the expected F2 progeny on the basis of Mendel’s Law of Independent Assortment, which states that the alleles for one gene segregate independently of the alleles for other genes during gamete formation.arrow_forwardYou self an F1 plant that is heterozygous for two dominant resistance genes, R1 and R2 and inoculate the F2 progeny with a pathogen race that is avirulent on both R1 and R2 (it carries both avirulence genes Avr1 and Avr2).You get 40 susceptible progeny out of 200 total progeny. (a) What is the linkage phase for these two genes? (b) What is the recombination distance?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Anatomy & Physiology (11th Edition)BiologyISBN:9780134580999Author:Elaine N. Marieb, Katja N. HoehnPublisher:PEARSONBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxAnatomy & PhysiologyBiologyISBN:9781259398629Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa StouterPublisher:Mcgraw Hill Education,
- Molecular Biology of the Cell (Sixth Edition)BiologyISBN:9780815344322Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter WalterPublisher:W. W. Norton & CompanyLaboratory Manual For Human Anatomy & PhysiologyBiologyISBN:9781260159363Author:Martin, Terry R., Prentice-craver, CynthiaPublisher:McGraw-Hill Publishing Co.Inquiry Into Life (16th Edition)BiologyISBN:9781260231700Author:Sylvia S. Mader, Michael WindelspechtPublisher:McGraw Hill Education
Human Anatomy & Physiology (11th Edition)
Biology
ISBN:9780134580999
Author:Elaine N. Marieb, Katja N. Hoehn
Publisher:PEARSON
Biology 2e
Biology
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:OpenStax
Anatomy & Physiology
Biology
ISBN:9781259398629
Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa Stouter
Publisher:Mcgraw Hill Education,
Molecular Biology of the Cell (Sixth Edition)
Biology
ISBN:9780815344322
Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter
Publisher:W. W. Norton & Company
Laboratory Manual For Human Anatomy & Physiology
Biology
ISBN:9781260159363
Author:Martin, Terry R., Prentice-craver, Cynthia
Publisher:McGraw-Hill Publishing Co.
Inquiry Into Life (16th Edition)
Biology
ISBN:9781260231700
Author:Sylvia S. Mader, Michael Windelspecht
Publisher:McGraw Hill Education
How to solve genetics probability problems; Author: Shomu's Biology;https://www.youtube.com/watch?v=R0yjfb1ooUs;License: Standard YouTube License, CC-BY
Beyond Mendelian Genetics: Complex Patterns of Inheritance; Author: Professor Dave Explains;https://www.youtube.com/watch?v=-EmvmBuK-B8;License: Standard YouTube License, CC-BY