College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 4TP
To determine
The correct statement correctly describing the graph of the ball's vertical velocity versus time.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
From the top of a cliff, a person throws a stone straight downward. The initial speed of the stone just after leaving the person's hand is 8.1 m/s
After 0.46 s, how far beneath the top of the cliff is the stone? (Give just the distance fallen, that is, a magnitude.) m
Scenario: A toy rocket is launched straight upward from a pad 10 ft above ground level with an initial velocity of 80 ft/sec.
Use the general formula for the vertical position (height) of an object moving under the influence of gravity where s0 is the initial vertical position, v0 is the initial velocity, and s is the vertical position of the object.
Graph your equation with time on the horizontal axis and height on the vertical axis. Let the values for the time range from 0 to 10 seconds and the values for the height range from 0 to 200 feet. Include your graph in this response.
A sports car driver turned his car 15.0 km [E 30.0° N], and then turned again 30.0 km [W 45.0° N] to get back on track. If the diversion lasted a total of 2.00 minutes, what was the average velocity of the car, in m/s? Include diagrams to help you solve the question.
Chapter 3 Solutions
College Physics
Ch. 3 - Which of the following is a vector: a person's...Ch. 3 - Give a specific example of a vector, stating its...Ch. 3 - What do vectors and scalars have in common? How do...Ch. 3 - Two calipers in a national park hike from their...Ch. 3 - If an airplane plot is told to fly 123 km in a...Ch. 3 - Suppose you take two steps A and B (that is, two...Ch. 3 - Explain why it is not possible to add a scalar to...Ch. 3 - If you take two steps of different sizes, can you...Ch. 3 - Suppose you add two vectors A and B. What relative...Ch. 3 - Give an example of a nonzero vector that has a...
Ch. 3 - Explain why a vector cannot have a component...Ch. 3 - If the vectors A and B are perpendicular, what is...Ch. 3 - Answer the following questions for projectile...Ch. 3 - Answer the following questions for projectile...Ch. 3 - For a fixed initial speed, the range of a...Ch. 3 - During a lecture demonstration, a professor places...Ch. 3 - What frame or frames of reference do you...Ch. 3 - A basketball player dribbling clown the court...Ch. 3 - If someone riding in the back of a pickup truck...Ch. 3 - The hat of a jogger running at constant velocity...Ch. 3 - A clod of dirt falls from the bed of a moving...Ch. 3 - Find the following for path A in Figure 3.54: (a)...Ch. 3 - Find the following for path B in Figure 3.54: (a)...Ch. 3 - Find the north and east components of the...Ch. 3 - Suppose you walk 18.0 m straight west and then...Ch. 3 - Suppose you first walk 12.0 m in a direction 20°...Ch. 3 - Repeat the problem above, but reverse the order of...Ch. 3 - (a) Repeat the problem two problems prior, but for...Ch. 3 - Show that the order of addition of three vectors...Ch. 3 - Show that the sum of the vectors discussed in...Ch. 3 - Find the magnitudes of velocity vAand vBin figure...Ch. 3 - Find the components of vtot along the x- and...Ch. 3 - Find the components of vtot along a set of...Ch. 3 - Find the following for path C in Figure 3.58: (a)...Ch. 3 - Find the following for path D in Figure 3.58: (a)...Ch. 3 - Find the north and east components of the...Ch. 3 - Solve the following problem using analytical...Ch. 3 - Repeat Exercise 3.16 using analytical techniques,...Ch. 3 - You drive 7.50 km in a straight line in a...Ch. 3 - Do Exercise 3.16 again using analytical techniques...Ch. 3 - A new landowner has a triangular piece of flat...Ch. 3 - You fly 32.0 km in a straight line in still air in...Ch. 3 - A farmer wants to fence off his four-sided plot of...Ch. 3 - In an attempt to escape his island, Gilligan...Ch. 3 - Suppose a pilot flies 40.0 km in a direction 60°...Ch. 3 - A projectile is launched at ground level with an...Ch. 3 - A ball is kicked with an initial velocity of 16...Ch. 3 - A ball is thrown horizontally from the top of a...Ch. 3 - (a) A daredevil is attempting to jump his...Ch. 3 - An archer shoots an arrow at a 75.0 m distant...Ch. 3 - A rugby player passes the ball 7.00 m across the...Ch. 3 - Verify the ranges for the projectiles in Figure...Ch. 3 - Verity the ranges shown for the projectiles in...Ch. 3 - The cannon on a battleship can fire a shell a...Ch. 3 - An arrow is shot from a height of 1.5 m toward a...Ch. 3 - In the standing broad jump, one squats and then...Ch. 3 - The world long jump record is 8.95 m (Mike Powell,...Ch. 3 - Serving at a speed of 170 km/h, a tennis player...Ch. 3 - A football quarterback is moving straight backward...Ch. 3 - Gun sights are adjusted to aim high to compensate...Ch. 3 - An eagle is flying horizontally at a speed of 3.00...Ch. 3 - An owl is carrying a mouse to the chicks in its...Ch. 3 - Suppose a soccer player kicks the ball from a...Ch. 3 - Can a goalkeeper at her/ his goal kick a soccer...Ch. 3 - The free throw line in basketball is 4.57 m (15...Ch. 3 - In 2007, Michael Carter (U.S.) set a world record...Ch. 3 - A basketball player is running at 5.00 m/s...Ch. 3 - A football player punts the ball at a 45.0° angle....Ch. 3 - Prove that the trajectory of a projectile is...Ch. 3 - Derive R=v02sin20g for the range of a projectile...Ch. 3 - Unreasonable Results (a) Find the maximum range of...Ch. 3 - Construct Your Own Problem Consider a ball tossed...Ch. 3 - Bryan Allen pedaled a human-powered aircraft...Ch. 3 - A seagull flies at a velocity of 9.00 m/s straight...Ch. 3 - Near the end of a marathon race, the first two...Ch. 3 - Verity that the coin dropped by the airline...Ch. 3 - A football quarterback is moving straight backward...Ch. 3 - A ship sets sail from Rotterdam, The Netherlands,...Ch. 3 - (a) A jet airplane flying from Darwin, Australia,...Ch. 3 - (a) In what direction would the ship in Exercise...Ch. 3 - (a) Another airplane is flying in a jet stream...Ch. 3 - A sandal is dropped from the top of a 15.0-m-high...Ch. 3 - The velocity of the wind relative to the water is...Ch. 3 - The great astronomer Edwin Hubble discovered that...Ch. 3 - (a) Use the distance and velocity data in Figure...Ch. 3 - An athlete crosses a 25-m-wide river by swimming...Ch. 3 - A ship sailing in the Gulf Stream is heading 25.0°...Ch. 3 - An ice hockey player is moving at 8.00 m/s when he...Ch. 3 - Unreasonable Results Suppose you wish to shoot...Ch. 3 - Unreasonable Results A commercial airplane has an...Ch. 3 - Construct Your Own Problem Consider an airplane...Ch. 3 - Prob. 1TPCh. 3 - Prob. 2TPCh. 3 - Prob. 3TPCh. 3 - Prob. 4TPCh. 3 - Prob. 5TPCh. 3 - Prob. 6TP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A person hits a trampoline while moving downward with a speed of 4 m/s and rebounds a short time later with roughly the same speed upward. If the person is in contact with the trampoline for about 1.8 s, what are the magnitude and direction of the person’s average acceleration during this time interval? (Hint: You can ignore the effects due to gravity.) (Round the answer to one decimal place.) The magnitude is ____ m/s2. The direction is ________( Choose One upward, downward, to the right, to the left)arrow_forwardAn athlete is training on a 100 m long linear track. His motion is described by the graph of his position vs. time, below. For each segment of the graph, find the magnitude and direction of the athlete's velocity. magnitude vA _______ m/s direction vA(Pick from the following choices)- Positive x- Negative x- The magnitude is zero magnitude vB _______ m/s direction vB(Pick from the following choices)- Positive x- Negative x- The magnitude is zero magnitude vC _______ m/s direction vC(Pick from the following choices)- Positive x- Negative x- The magnitude is zero magnitude vD _______ m/s direction vD(Pick from the following choices)- Positive x- Negative x- The magnitude is zeroarrow_forwardThe graph is a particle's position along x axis versus time. What are the signs of the particle's velocity at t=0, 1, 2, and 3 s. t (s) 2 +,+,0,- -,0,+,+ -„0,+,0 7,0,+ 0,+,0,+arrow_forward
- The froghopper, Philaenus spumarius, holds the world record for insect jumps. When leaping at an angle of 58.0degrees above the horizontal, some of the tiny critters have reached a maximum height of 56.7 cm above the level ground. A)What was the takeoff speed for such a leap? B)What horizontal distance did the froghopper cover for this world-record leap?arrow_forwardKEY TERMS 1. physics (intro) 2. position (2.1) 3. motion 4. scalar (2.2) 5. vector 6. average speed 7. distance 8. instantaneous speed 9. average velocity 10. displacement 11. instantaneous velocity 12. acceleration (2.3) 13. average acceleration 14. acceleration due to gravity 15. free fall 16. terminal velocity 17. centripetal acceleration (2.4) 18. projectile motion (2.5) For each of the following items, fill in the number of the appropriate Key Term from the preceding list. r. _____ Displacement/travel timearrow_forwardKEY TERMS 1. physics (intro) 2. position (2.1) 3. motion 4. scalar (2.2) 5. vector 6. average speed 7. distance 8. instantaneous speed 9. average velocity 10. displacement 11. instantaneous velocity 12. acceleration (2.3) 13. average acceleration 14. acceleration due to gravity 15. free fall 16. terminal velocity 17. centripetal acceleration (2.4) 18. projectile motion (2.5) For each of the following items, fill in the number of the appropriate Key Term from the preceding list. b. _____ Difference between final and initial velocities divided by timearrow_forward
- A termite crawls on the floor along the curved path shown in the figure below. The termite's positions and velocities are indicated for times ti = 0 and tf = 4.20 s. (Note the termite's initial velocity at ti in the +y-direction and its final velocity at tf is in the +x-direction.) Find the x- and y-components of the termite's displacement, average velocity, and average acceleration between the two times. (Indicate the direction with the signs of your answers.)arrow_forwardPlease assist with this question with details on how to do it. Thank you. Mayan kings and many school sports team are named for the puma, cougar, or mountain lion - felis concolor- the best jumper among animals. It can jump to a height of 12 ft when leaving the ground at an angle of 45 degrees. With the speed , in SI units, does it leave the ground to make this leap?arrow_forwardHow many seconds after it’s release will the bag strike the ground?arrow_forward
- An object has an acceleration defined by the equation a=5t+4 (m/s^2) where "t" is in seconds. The initial velocity of the object is -10 m/s and started at a position s = 40m. 1. What is the initial magnitude of the acceleration of the object? Express your answer in unit of m/s^2 2. What is the velocity of the object after 4s? Express your answer in unit of m/s. 3. What is the position of the object after 4s? Express your answer in unit of m.arrow_forwardQuestion: This is a motion diagram of an object moving along the x-direction with constant acceleration. The dots 1, 2, 3, ... show the position of the object at equal time intervals At. At the time labeled 3, what are the signs of the object's velocity vy and acceleration a,? 3 2 1 x= 0 A) V 0 C) V 0; ax > 0 E) V > 0; ax < 0arrow_forwardA ball is launched vertically upward with a speed of (21.0+A) m/s. Determine the speed of the ball when it has reached a height of (18.0 + B) m above the launch position. Give your answer in m/s and round the answer to three significant figures. A=15 B=8arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Speed Distance Time | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=EGqpLug-sDk;License: Standard YouTube License, CC-BY