Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 43P
Why is the following situation impassible? A normally proportioned adult walks briskly along a straight line in the +x direction, standing straight up and holding his right arm vertical and next to his body so that the arm does not swing. His right hand holds a ball at his side a distance h above the floor. When the ball passes above a point marked as x = 0 on the horizontal floor, he opens his fingers to release the ball from rest relative to his hand. The ball strikes the ground for the first time at position x = 7.00h.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Your answer is partially correct.
A particle moves horizontally in uniform circular motion, over a horizontal xy plane. At one instant, it
moves through the point at coordinates (4.90 m, 3.70 m) with a velocity of -2.40 î m/s and an
acceleration of +11.9 m/s². What are the (a) x and (b) y coordinates of the center of the circular path?
(a) Number i 4.41
(b) Number i
3.70
Unit
Unit
m
m
For a forensics experiment, a student decides to measure the muzzle velocity of the
pellets from his BB gun. She points the gun horizontally. On a vertical wall a
distance 47.3 m away from the gun, a target is placed. The shots hit the target a
vertical distance 0.10 m below the gun's barrel. What is the initial speed of the
pellets?
Your Answer:
units
Answer
The velocity of a particle moving in thex-y plane is given by (4.03i + 7.36j) m/s at time t = 3.64 s. Its average acceleration during the
next 0.020 s is (2.2i + 2.6j) m/s?. Determine the velocity v of the particle at t = 3.660 s and the angle e between the average-
acceleration vector and the velocity vector at t = 3.660 s.
Answers:
v= (
i
i+
i
j) m/s
e =
Chapter 3 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 3.1 - Consider the following controls in an automobile...Ch. 3.3 - (i) As a projectile thrown upward moves in its...Ch. 3.3 - Rank the launch angles for the five paths in...Ch. 3.4 - Which of the following correctly describes the...Ch. 3.5 - A particle moves along a path, and its speed...Ch. 3 - In which of the following situations is the moving...Ch. 3 - A rubber stopper on the end of a string is swung...Ch. 3 - Figure OQ3.3 shows a birds-eye view of a car going...Ch. 3 - Entering his dorm room, a student tosses his book...Ch. 3 - Does a car moving around a circular track with...
Ch. 3 - An astronaut hits a golf ball on the Moon. Which...Ch. 3 - A projectile is launched on the Earth with a...Ch. 3 - A baseball is thrown from the outfield toward the...Ch. 3 - A student throws a heavy red ball horizontally...Ch. 3 - A sailor drops a wrench from the top of a...Ch. 3 - A set of keys on the end of a string is swung...Ch. 3 - Prob. 12OQCh. 3 - Prob. 1CQCh. 3 - Prob. 2CQCh. 3 - Prob. 3CQCh. 3 - Prob. 4CQCh. 3 - Prob. 5CQCh. 3 - Prob. 6CQCh. 3 - A projectile is launched at some angle to the...Ch. 3 - A motorist drives south at 20.0 m/s for 3.00 min,...Ch. 3 - Prob. 2PCh. 3 - A particle initially located at the origin has an...Ch. 3 - It is not possible to see very small objects, such...Ch. 3 - A fish swimming in a horizontal plane has velocity...Ch. 3 - At t = 0, a particle moving in the xy plane with...Ch. 3 - Mayan kings and many school sports teams are named...Ch. 3 - The small archerfish (length 20 to 25 cm) lives in...Ch. 3 - Prob. 9PCh. 3 - Prob. 10PCh. 3 - Prob. 11PCh. 3 - Prob. 12PCh. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - A firefighter, a distance d from a burning...Ch. 3 - A soccer player kicks a rock horizontally off a...Ch. 3 - Prob. 18PCh. 3 - A student stands at the edge of a cliff and throws...Ch. 3 - Prob. 20PCh. 3 - A playground is on the flat roof of a city school,...Ch. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Prob. 24PCh. 3 - As their booster rockets separate, Space Shuttle...Ch. 3 - Prob. 26PCh. 3 - The astronaut orbiting the Earth in Figure P3.27...Ch. 3 - Prob. 28PCh. 3 - Prob. 29PCh. 3 - A point on a rotating turntable 20.0 cm from the...Ch. 3 - Figure P3.31 represents the total acceleration of...Ch. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Prob. 37PCh. 3 - Prob. 38PCh. 3 - Prob. 39PCh. 3 - Prob. 40PCh. 3 - A certain light truck can go around an unbanked...Ch. 3 - A landscape architect is planning an artificial...Ch. 3 - Why is the following situation impassible? A...Ch. 3 - An astronaut on the surface of the Moon fires a...Ch. 3 - The Vomit Comet. In microgravity astronaut...Ch. 3 - A projectile is fired up an incline (incline angle...Ch. 3 - A basketball player is standing on the floor 10.0...Ch. 3 - A truck loaded with cannonball watermelons stops...Ch. 3 - A ball on the end of a string is whirled around in...Ch. 3 - An outfielder throws a baseball to his catcher in...Ch. 3 - Prob. 51PCh. 3 - A skier leaves the ramp of a ski jump with a...Ch. 3 - A World War II bomber flies horizontally over...Ch. 3 - A ball is thrown with an initial speed vi at an...Ch. 3 - Prob. 55PCh. 3 - A person standing at the top of a hemispherical...Ch. 3 - An aging coyote cannot run fast enough to catch a...Ch. 3 - Prob. 58PCh. 3 - The water in a river flows uniformly at a constant...Ch. 3 - Prob. 61P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The velocity of a particle is V and is constant. It moves counterclockwise on a circle with center "O" and radius R. Draw the circle. When the particle is in the vector R position, draw vector R, vector V, vector A, and vector da/dt(time derivative of acceleration).arrow_forward1. The coordinates of a particle moving in the XY plane are given as function of time by: X = 5m + ( 7 m/s^4) t ^4 Y = ( 10 m/s)t + (3 m/s^5)t ^5 Find the position vector of the body at t = 3.5 sec. ( first answer is X, followed by Y) Your answerarrow_forwardThe velocity of a particle is V and is constant. It moves counterclockwise on a circle with center "O" and radius R. Derivative of acceleration with respect to time; Find as a function of Ɵ, R, V, and the unit vectors (x^ , y^) in the x and y directions. Hint: a = -V^2/R(cosƟx^+ sinƟy^) and dƟ/dt= V/Rarrow_forward
- Problem 5: While competing in the long jump, a person leaps over a smooth horizontal sand surface. She lands on the surface with speed vf = 8.5 m/s at an angle = 37° below horizontal. Assume that the person moves without air resistance. Use a Cartesian coordinate system with the origin at her final position. The positive x-axis is directed from her initial to her final position, and the positive y-axis is directed vertically upwards. Part (c) What x position, in meters, did the jumper begin her long jump? x0 = ||arrow_forwardThe velocity of a particle moving in the x-y plane is given by (6.12i + 3.24j) m/s at time t = 3.65 s. Its average acceleration during the next 0.02 s is (4.0i + 6.0j) m/s². Determine the velocity v of the particle at t = 3.67 s and the angle between the average-acceleration vector and the velocity vector at t = 3.67 s. Answers: V = ( i 8= i it i j) m/sarrow_forwardCan part d be checked and I don't know how to do part c and earrow_forward
- A firework rocket is 85 m above the ground when it explodes. Immediately after the explosion one piece is moving 51 m/s at 23° to the upward vertical direction. A second piece is moving at 38 m/s at 11° below the horizontal direction. What what horizontal distance from the explosion site does each piece land?arrow_forwardAt time t = 0, a particle leaves the origin x = y = 0 of a two- dimensional rectangular coordinate system with velocity vo = (4 m/s)j and thereafter moves in the xy – plane with constant acceleration d = ( 4 m/s²) î + (– 2 m/s²) ĵ. At some later time t, the y-component of the particle's velocity vanishes (v, = 0). Find the position vector of the particle at this time t. %3D %3Darrow_forwardFrom the top of a cliff overlooking a lake, a person throws two stones, as shown in the drawing. The cliff is 33.7 m high. The two stones described have identical initial speeds of v0 = 13.9 m/s and are thrown at an angle θ = 21.0 °, one below the horizontal and one above the horizontal. What is the distance between the points where the stones strike the water? Neglect air resistance. I do not know where to startarrow_forward
- A particle moves in the xy plane with constant acceleration. At time zero, the particle is at x = 5.0 m, y = 4.0 m, and has velocity v = 9.0 m/s î + 10.0 m/s j. The acceleration is given by the vector a = 9.0 m/s2 î + 5 m/s2 j. (a) Find the velocity vector at t = 7.0 s. (72 V m/s) î + ( 45 v m/s) j (b) Find the position vector at t = 4.0 s. (133 x m) î + (40 X m) j (c) Give the magnitude and direction of the position vector part (b). X m X ° (counterclockwise from the +x-axis) 19289 16.74 The acceleration is constant so you can use the constant-acceleration equations in vector form. eBookarrow_forwardthree displacement vectors (3î – 3j) m, B = (î – 4j) m, and C= (-2î + 5j) m. Use the component method to determine (a) the magnitude and direction of D = à + B + ở and (b) the magnitude and direction of E = -Ả – B + Č. Consider the Aarrow_forwardReview. You are standing on the ground at the origin of a coordinate system. An airplane flies over you with constant velocity parallel to the x axis and at a fixed height of 7.60 X 103 m. At time t = 0, the airplane is directly above you so that the vector leading from you to it is P, = 7.60 × 10³j m. At t= 30.0 s, the position vector leading from you to the air- plane is P30 = (8.04 × 10³î + 7.60 × 10³j) m as suggested in Figure P3.31. Determine the magnitude and orientation of the airplane's position vector at t= 45.0 s. P. 30 Figure P3.31arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY