Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 29QTP
It can be shown that thermal distortion in precision devices is low for high values of thermal conductivity divided by the thermal expansion coefficient. Rank the materials in Table 3.1 according to their ability to resist thermal distortion.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Describe the physical properties of the materials (permeability, capillarity and thermal conductivity) and explain how these properties are determined.
1) Draw (using a normal graph paper) a conventional
stress-strain diagram for ANY metallic material (e.g. steel,
aluminium, copper, brass, iron, tungsten). The diagram
should be as accurate as possible using a suitable scale
(e.g. 1cm: 10 N).
2) Calculate the Modulus of Elasticity, Modulus of
Toughness and Modulus of Resilience for the material
from the stress-strain diagram. Show your calculations in
detail on a separate A4 piece of paper.
Provide a concise explanation on how materials can exhibit high thermal conductivity but have low electrical conductivity.
Chapter 3 Solutions
Manufacturing Engineering & Technology
Ch. 3 - List several reasons that density is an important...Ch. 3 - Explain why the melting point of a material can be...Ch. 3 - What adverse effects can be caused by thermal...Ch. 3 - Prob. 4RQCh. 3 - What is the piezoelectric effect?Ch. 3 - Prob. 6RQCh. 3 - Prob. 7RQCh. 3 - What is the difference between thermal...Ch. 3 - What is corrosion? How can it be prevented or...Ch. 3 - Explain stress-corrosion cracking. Why is it also...
Ch. 3 - Prob. 11RQCh. 3 - Prob. 12RQCh. 3 - What is the fundamental difference between...Ch. 3 - Describe the significance of structures and...Ch. 3 - Prob. 15QLPCh. 3 - Note in Table 3.1 that the properties of the...Ch. 3 - Rank the following in order of increasing thermal...Ch. 3 - Prob. 18QLPCh. 3 - Explain how thermal conductivity can play a role...Ch. 3 - What material properties are desirable for heat...Ch. 3 - Prob. 21QLPCh. 3 - Prob. 22QLPCh. 3 - Two physical properties that have a major...Ch. 3 - Which of the materials described in this chapter...Ch. 3 - Which properties described in this chapter can be...Ch. 3 - If we assume that all the work done in plastic...Ch. 3 - The natural frequency, f, of a cantilever beam is...Ch. 3 - Plot the following for the materials described in...Ch. 3 - It can be shown that thermal distortion in...Ch. 3 - Add a column to Table 3.1 that lists the...Ch. 3 - Prob. 31SDPCh. 3 - Prob. 32SDPCh. 3 - Prob. 33SDPCh. 3 - Prob. 34SDPCh. 3 - Prob. 36SDPCh. 3 - Prob. 38SDPCh. 3 - Prob. 40SDPCh. 3 - Prob. 41SDPCh. 3 - Prob. 42SDPCh. 3 - Prob. 43SDP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- If the area and temperatures are same across the material. Explain whether thermal conductivity will have any effect on thickness or not?arrow_forwardExplain why the behaviour of materials is considered such an important factor when selecting a material for a given product or application.arrow_forwardview Elastic Recovery After Plastic Deformation 5. A cylindrical specimen of a brass alloy 7.5 mm (0.30 in.) in diameter and 90.0 mm (3.54 in.) long is pulled in tension with a force of 6000 N (1350 lbf); the force is subsequently released. (a) Compute the final length of the specimen at this time. The tensile stress-strain behavior for this alloy is shown in Figure below. (b) Compute the final specimen length when the load is increased to 16,500 N (3700 lbf) and then released. 500 Stress (MPa) 400 300 200 100 Tensile strength 450 MPa (65,000 psi) MPa 200 100 0.10 I I 10³ psi 40 30 20 10 0.20 Strain 0.005 T Yield strength 250 MPa (36,000 psi) 0.30 1 70 60 50 40 30 20 10 0 0.40 Stress (10³ psi)arrow_forward
- What do you mean by fatigue failure of machine parts? Explain briefly. Give an example ofa thing or part that failed by the repeated compressive load in daily life use. And Sketch stress-strain curves of ductile and brittle materials. Show all the relevant points andstrength. Also, discuss the differences of behaviour between ductile and brittle material withrespect to stress-strain curves.arrow_forwardDefine the term Stiffness? of materials?arrow_forwardSketch Figure 1.3, curve b (a ductile metal). Label it with the following terms, indicating from which location on the curve each quantity can be identified or extracted: elastic region, plastic region, proportional limit, tensile strength, onset of necking, fracture stress.arrow_forward
- Define Bayes’ rule and explain its role in mechanical engineering.arrow_forwardDiscuss the importance of fatigue test for engineering materials. Briefly explain the stages of fatigue failure. What do you mean by beach marks and striations? What are the factors affecting the fatigue failure.arrow_forwardFatigue accounts for ~90% of mechanical engineering failures. Please list 4 measures that may be taken to increase the resistance to fatigue of metallic materials. Please also briefly explain how each of these measures improves fatigue performance.arrow_forward
- Why is fatigue generally less of a problem with ceramics and glasses than with metals and polymers?arrow_forwardGive some examples of some materials that are affected by fatigue?arrow_forwardSintered silicon nitride parts are expected to experience tensile stresses 50% of the ultimate tensile strength of the material. What will be the maximum allowable size of internal flaws for these parts not to fail in service? Given the following properties of the material: Specific surface energy: 0.3 J/m2 its Youngs Modulus: 304 GPa Ultimate tensile Strength: 570 MPa Select one: a. 1.43 µm b. 0.71 µm c. 15 µm d. 85 µm e. 9.5 µmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license