Modern Physics
2nd Edition
ISBN: 9780805303087
Author: Randy Harris
Publisher: Addison Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 25E
To determine
The Planck’s constant.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A neutron of mass 1.675 × 10-27 kg has a de Broglie wavelength of 7.8x10-12 m. What is the kinetic energy (in eV) of this non-relativistic neutron? Please give your answer with two decimal places.
1 eV = 1.60 × 10-19 J, h = 6.626 × 10-34 J ∙ s.
Problem-1:
An asteroid is hurtling toward earth at 150,000“. The temperature of the asteroid is about 100 K, meaning that its peak emission
is 2 = 29 µm. The speed of light is c =
3E[8].
a) What is the wavelength of light that we receive from the asteroid? (Answer: 2.89855E[-05] m)
A photon in a laboratory experiment has an energy of 4.2 eV. What is the frequency of this photon? Planck’s constant is 6.63 × 10−34 J · s. Answer in units of Hz.
Chapter 3 Solutions
Modern Physics
Ch. 3 - Prob. 1CQCh. 3 - Prob. 2CQCh. 3 - Prob. 3CQCh. 3 - Prob. 4CQCh. 3 - Prob. 5CQCh. 3 - Prob. 6CQCh. 3 - Prob. 7CQCh. 3 - A ball rebounds elastically from the floor. What...Ch. 3 - Prob. 9CQCh. 3 - Prob. 10CQ
Ch. 3 - Prob. 11ECh. 3 - Prob. 12ECh. 3 - Prob. 13ECh. 3 - Prob. 14ECh. 3 - Prob. 15ECh. 3 - Prob. 16ECh. 3 - Prob. 17ECh. 3 - What is the stopping potential when 250 nm...Ch. 3 - Prob. 19ECh. 3 - Prob. 20ECh. 3 - Prob. 21ECh. 3 - Prob. 22ECh. 3 - Prob. 23ECh. 3 - Prob. 24ECh. 3 - Prob. 25ECh. 3 - Prob. 26ECh. 3 - Prob. 27ECh. 3 - Prob. 28ECh. 3 - Prob. 29ECh. 3 - Prob. 30ECh. 3 - Prob. 31ECh. 3 - Prob. 32ECh. 3 - Prob. 33ECh. 3 - Prob. 34ECh. 3 - Prob. 35ECh. 3 - Prob. 36ECh. 3 - Verify that the Chapter 2 formula KE=mc2 applies...Ch. 3 - Prob. 38ECh. 3 - Prob. 39ECh. 3 - Prob. 40ECh. 3 - Prob. 41ECh. 3 - Prob. 42ECh. 3 - Prob. 43ECh. 3 - Prob. 44ECh. 3 - Prob. 45ECh. 3 - Prob. 46ECh. 3 - Prob. 47CECh. 3 - Prob. 49CECh. 3 - Prob. 50CECh. 3 - Prob. 51CECh. 3 - Prob. 52CECh. 3 - Prob. 53CECh. 3 - Prob. 54CECh. 3 - Prob. 55CE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Through what potential difference ΔVΔV must electrons be accelerated (from rest) so that they will have the same wavelength as an x-ray of wavelength 0.130 nmnm? Use 6.626×10−34 J⋅sJ⋅s for Planck's constant, 9.109×10−31 kgkg for the mass of an electron, and 1.602×10−19 CC for the charge on an electron. Express your answer using three significant figures. =89.0 V Through what potential difference ΔVΔV must electrons be accelerated so they will have the same energy as the x-ray in Part A? Use 6.626×10−34 J⋅sJ⋅s for Planck's constant, 3.00×108 m/sm/s for the speed of light in a vacuum, and 1.602×10−19 CC for the charge on an electron. Express your answer using three significant figures. Second question is what I need help on! Thanks!arrow_forwardIn an experiment on the photoelectric effect, a metal is illuminated by visible light of different wavelengths. A photoelectron has a maximum kinetic energy of 0.9 eV when red light of wavelength 640 nm is used. With blue light of wavelength 420 nm, the maximum kinetic energy of the photoelectron is 1.9 eV. Use this information to calculate an experimental value for the Planck constant h. [arrow_forwardA photon in a laboratory experiment has anenergy of 4.1 eV.What is the frequency of this photon?Planck’s constant is 6.63 × 10−34 J · s.Answer in units of Hz.arrow_forward
- Describe a typical nuclear fusion process with a neat sketch. Calculate the de Broglie wavelength of an electron having a mass of 9.11 x 10-31 kg with a Kinetic energy of 90 eV. The value of the Planck's constant is equal to 6.63 * 10-34 Js and 1 eV is equal to 1.602 x 10-19 J. How Raman scattering occurs?arrow_forwardA) Calculate the de Broglie wavelength of a neutron (mn = 1.67493×10-27 kg) moving at one six hundredth of the speed of light (c/600). Enter at least 4 significant figures. (I got the answer 949.4 pm but it is wrong, please help) B) Calculate the velocity of an electron (me = 9.10939×10-31 kg) having a de Broglie wavelength of 230.1 pm.arrow_forwardA dust particle of 1.0 μm diameter and 10−15 kg mass is confined within a narrow box of 10.0 μm length. Planck’s constant is 6.626 × 10−34 J ∙ s. What is the range of possible velocities for this particle? What is the range of possible velocities for an electron confined to a region roughly the size of a hydrogen atom?arrow_forward
- The energy density distribution function in terms of frequency for blackbody radiation is described by the formula Planck derived, given as: p(v,T) = c3 exp(hu/kT)-1 Specify what each of the parameters or variables (i.e. {h, c, k, v,T}) are called in this equation. You may have to look this up, since we did not cover this in the lectures or book. What is the dimension of h? Sketch what this distribution function looks like as a function of v. You can do this with information given.arrow_forwardThe photoelectric equation for the kinetic energy of a photoelectron is, following Einstein, E ≤ hf − W, where h is Planck’s constant, f is the frequency of the light, and W is the work-function. Sodium has W = 3.2×10−19 J. When sodium is illuminated by monochromatic light of a particularfrequency, electrons are emitted with speeds up to 8 × 105 m s−1.a) Calculate the wavelength of the light.b) Calculate the stopping potential.arrow_forwardThe photoelectric equation for the kinetic energy of a photoelectron is, following Einstein, E ≤hf − W, where h is Planck’s constant, f is the frequency of the light, and W is the work-function.Sodium has W = 3.2×10−19 J. When sodium is illuminated by monochromatic light of a particularfrequency, electrons are emitted with speeds up to 8 × 105 m s−1.a) Calculate the wavelength of the light.b) Calculate the stopping potential.arrow_forward
- 1.arrow_forwardAn X-ray photon with a wavelength of 0.999 nmnm strikes a surface. The emitted electron has a kinetic energy of 990 eV. What is the binding energy of the electron in kJ/molkJ/mol? [Note that KEKE = 12mv212mv2 and 1 electron volt (eVeV) = 1.602×10−19J1.602×10−19J.] Express your answer using three significant figures.arrow_forwardThe photoelectric equation for the kinetic energy of a photoelectron is, following Einstein, E < hf – W, where h is Planck's constant, f is the frequency of the light, and W is the work-function. Sodium has W = 3.2×10-19 J. When sodium is illuminated by monochromatic light of a particular frequency, electrons are emitted with speeds up to 8 x 105 ms-1. a) Calculate the wavelength of the light. b) Calculate the stopping potential.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON