Question
The photoelectric equation for the kinetic energy of a photoelectron is, following Einstein, E ≤
hf − W, where h is Planck’s constant, f is the frequency of the light, and W is the work-function.
Sodium has W = 3.2×10−19 J. When sodium is illuminated by monochromatic light of a particular
frequency, electrons are emitted with speeds up to 8 × 105 m s−1
.
a) Calculate the wavelength of the light.
b) Calculate the stopping potential.

Transcribed Image Text:The photoelectric equation for the kinetic energy of a photoelectron is, following Einstein, E <
hf -W, where h is Planck's constant, f is the frequency of the light, and W is the work-function.
Sodium has W = 3.2x10-19 J. When sodium is illuminated by monochromatic light of a particular
frequency, electrons are emitted with speeds up to 8 x 105 m s-1.
a) Calculate the wavelength of the light.
b) Calculate the stopping potential.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 5 steps

Knowledge Booster
Similar questions
- Electrons are ejected from a metallic surface with speeds ranging up to 4.1 × 105 m/s when light with a wavelength of 630nm is used. What is the cutoff frequency for this surface? Express your answer in terms of 1014 Hz and round it to the nearest hundredth. For example, if you get 1.234 x 1014 Hz, you type in 1.23. (Hint: you should first calculate the work function of the surface.) Use h=6.626x1034 Js; c=3 x108 m/s. ; me=9.11x10-31kg Js; c=3 x108 m/s. ; me=9.11x1031kgarrow_forward4. In an experiment on the photoelectric effect, a metal is illuminated by visible light of different wavelengths. A photoelectron has a maximum kinetic energy of 0.9 eV when red light of wavelength 640 nm is used. With blue light of wavelength 420 nm, the maximum kinetic energy of the photoelectron is 1.9 eV. Use this information to calculate an experimental value for the Planck constant h. [arrow_forwardThe work function of a tungsten surface is 5.4 eV. When the surface is illuminated by light of wavelength 175 nm, the maximum photoelectric energy is 1.7 eV. Find Planck's constant from these data.arrow_forward
- What temperature, in °C, is a blackbody whose emission spectrum peaks at 320 nm ? T= Submit Request Answer Part B VE ΑΣΦ T= Submit What temperature, in °C, is a blackbody whose emission spectrum peaks at 4.60 m? VE ΑΣΦ P By Request Answer ? Stag °C ? °Carrow_forwardWhen light with a wavelength of 208 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic energy of 3.59 × 10-19 J. Determine the wavelength (in nm) of light that should be used to double the maximum kinetic energy of the electrons ejected from this surface.arrow_forwardAn electron of mass 9.11 × 10−31 kg and a bowling ball of mass 6.00 kg each have 4.50 eV of kinetic energy. Calculate the de Broglie wavelength of the electron: Calculate the wavelength of a 4.50 eV photon:arrow_forward
- Data for the photoelectric effect of silver are given in the table. Frequency of incident radiation (1015 ?−1)(1015 s−1) Kinetic energy of ejected electrons (10−19 ?)(10−19 J) 2.00 5.90 2.50 9.21 3.00 12.52 3.50 15.84 4.00 19.15 Using these data, find the experimentally determined value of Planck's constant, ℎh , and the threshold frequency, ?0ν0 , for silver.arrow_forwardIn 1893, physicist Wilhelm Wien showed that the wavelength of maximum thermal emission strength of electromagnetic radiation from a blackbody at temperature T obeys: Amax T 2.898 mm.K. = This result, known today as Wien's Law, is very useful for, among other things, esti- mating the temperature of distant objects based on the color of light they emit. (a) Planck's spectral energy density function is usually written as an energy per range df of frequencies. Quite often, however, it is more convenient to express it as anarrow_forwardBy Thomson's time, it was known that excited atoms emit light waves of only certain frequencies. In his model, the frequency of emitted light is the same as the oscillation frequency of the electron or electrons in the atom. What would the radius of a Thomson-model atom have to be for it to produce red light of frequency 4.55×1014 HzHz ? (see Appendix FF from the textbook for data about the electron)arrow_forward
- Visible light falls into wavelength ranges of 400-700 nm, for which 1 m=1×109 nm The energy and wavelength of light are related by the equationE=hcλ where E is energy in Joules, h is Planck's constant ( 6.626×10−34 J-s ), c is the speed of light ( 2.998×108 m/s), and λ is the wavelength in m. If a visible light photon has a wavelength of 632.3 nm, what is the energy of the photon (in J)?arrow_forwardCalculate the maximum wavelength, Amax, of electromagnetic radiation that could eject electrons from the surface of copper, which has a work function of 7.26 x 10-1⁹ J. Amax = λ = m If the maximum speed of the emitted photoelectrons is 4.92 x 106 m/s, what wavelength of electromagnetic radiation struck the surface and caused the ejection of the photoelectrons? marrow_forwardNo photoelectrons are emitted from tungsten unless the wavelength of incoming light is less than 270 nm. If an experiment requires electrons with a maximum kinetic energy of 2.0 eV, what frequency of light should be used to illuminate the tungsten?arrow_forward
arrow_back_ios
arrow_forward_ios